【题目】如图所示,在 10×6 的正方形网格中,每个小正方形的边长均为 1,线段 AB 的端点 A、B 均在小正方形的顶点上.
![]()
(1)在图中画出以 AB 为一腰的等腰△ABC,点 C 在小正方形顶点上,△ABC 为钝角三角形,且△ABC 的面积为
;
(2)在图中画出以 AB 为斜边的直角三角形 ABD, 点 D在小正方形的顶点上,且 AD>BD;
(3)连接 CD,请你直接写出线段 CD 的长.
【答案】(1)如图所示见解析;(2)如图所示见解析;(3)
.
【解析】
(1)根据AB的长和三角形的面积即可求出点C所在的直线,然后根据AB=BC即可找出点C;
(2)以AB为直径作圆,从圆与小正方形的顶点的交点中找出满足AD>BD的点D即可;
(3)根据勾股定理计算即可.
解:(1)由图可知:AB=5,
∵△ABC 的面积为![]()
∴C到AB的距离为
×2÷5=3
∴点C在与AB平行且相距3的直线上,以点B为圆心,AB的长为半径作弧,交该直线与点C,连接AC、BC,如图所示△ABC即为所求;
![]()
(2)以AB为直径作圆,从圆与小正方形的顶点的交点中找出满足AD>BD的点D即可,如图所示,△ABD即为所求;
(3)根据勾股定理
.
科目:初中数学 来源: 题型:
【题目】在方格纸中,每个方格的顶点叫做格点,以格点连线为边的三角形叫做格点三角形.如图甲中,每个小正方形的边长为1,以线段AB为一边的格点三角形随着第三个顶点的位置不同而发生变化.
(1)根据图甲,填写下表,并计算出格点三角形面积的平均值;
格点三角形面积 | 1 | 2 | 3 | 4 |
频数 |
(2)在图乙中,所给的方格纸大小与图甲一样,如果以线段CD为一边,作格点三角形,试填写下表,并计算出格点三角形面积的平均值;
格点三角形面积 | 1 | 2 | 3 | 4 |
频数 |
(3)如果将图乙中格点三角形面积记为s,频数记为x,根据你所填写的数据,猜测s与x之间存在哪种函数关系,并求出函数关系式.
![]()
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,等边△ABC的边长为2cm,点P从点A出发,以1cm/s的速度沿AC向点C运动,到达点C停止;同时点Q从点A出发,以2cm/s的速度沿AB﹣BC向点C运动,到达点C停止,设△APQ的面积为y(cm2),运动时间为x(s),则下列最能反映y与x之间函数关系的图象是( )
![]()
A.
B.![]()
C.
D.![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点A在抛物线y=x2﹣2x+2上运动.过点A作AC⊥x轴于点C,以AC为对角线作矩形ABCD,连结BD,则对角线BD的最小值为_____.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线
的图象如图所示:
(1)将该抛物线向上平移2个单位,分别交x轴于A、B两点,交y轴于点C,则平移后的解析式为 .
(2)判断△ABC的形状,并说明理由.
(3)在抛物线对称轴上是否存在一点P,使得以A、C、P为顶点的三角形是等腰三角形?若存在,求出点P的坐标;若不存在,说明理由.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:在平面直角坐标系中,抛物线 y=ax2 -2ax+4(a<0) 交 x 轴于点 A、B,与 y 轴交于点 C,AB=6.
![]()
(1)如图 1,求抛物线的解析式;
(2) 如图 2,点 R 为第一象限的抛物线上一点,分别连接 RB、RC,设△RBC 的面积为 s,点 R 的横坐标为 t,求 s 与 t 的函数关系式;
(3)在(2)的条件下,如图 3,点 D 在 x 轴的负半轴上,点 F 在 y 轴的正半轴上,点 E 为 OB 上一点,点 P 为第一象限内一点,连接 PD、EF,PD 交 OC 于点 G,DG=EF,PD⊥EF,连接 PE,∠PEF=2∠PDE,连接 PB、PC,过点R 作 RT⊥OB 于点 T,交 PC 于点 S,若点 P 在 BT 的垂直平分线上,OB-TS=
,求点 R 的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线y=﹣x+3与x轴、y轴分别交于点B、C;抛物线y=﹣x2+bx+c经过B、C两点,并与x轴交于另一点A.
![]()
(1)求该抛物线所对应的函数关系式;
(2)设P(x,y)是(1)所得抛物线上的一个动点,过点P作直线l⊥x轴于点M,交直线BC于点N.
①若点P在第一象限内.试问:线段PN的长度是否存在最大值?若存在,求出它的最大值及此时x的值;若不存在,请说明理由;
②求以BC为底边的等腰△BPC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC内接于⊙O,直径DE⊥AB于点F,交BC于点 M,DE的延长线与AC的延长线交于点N,连接AM.
![]()
(1)求证:AM=BM;
(2)若AM⊥BM,DE=8,∠N=15°,求BC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,
中,
,
.P是底边
上的一个动点(P与B、C不重合),以P为圆心,
为半径的
与射线
交于点D,射线
交射线
于点E.
![]()
(1)若点E在线段
的延长线上,设
,
求y关于x的函数关系式,并写出x的取值范围.
(2)连接
,若
,求
的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com