精英家教网 > 初中数学 > 题目详情
10.在△ABC中,AB=6,BC=8,CA=7,延长CA至点P,使∠PBA=∠C,求AP的长.

分析 由已知∠PBA=∠C,∠P=∠P,可得△PAB∽△PBC,即$\frac{PA}{PB}=\frac{PB}{PC}=\frac{AB}{BC}$,设PA=x,PB=y代入数值即可求出.

解答 解:由已知∠PBA=∠C,∠P=∠P,
∴△PAB∽△PBC,
即$\frac{PA}{PB}=\frac{PB}{PC}=\frac{AB}{BC}$,
设PA=x,PB=y,则有$\left\{\begin{array}{l}{\frac{x}{y}=\frac{6}{8}}\\{\frac{y}{x+7}=\frac{6}{8}}\end{array}\right.$,
解方程组可得x=9,
∴PA=9.

点评 本题考查了相似三角形的判定和性质,列出二元一次方程组是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

3.如图,点A,B在⊙O上,点C在⊙O外,连接AB和OC交于D,且OB⊥OC,AC=CD.        
(1)判断AC与⊙O的位置关系,并证明你的结论;
(2)若OC=13,OD=1,求⊙O的半径及tanB.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.在数学活动课上,老师提出了一个问题,希望同学们进行探究.
在平面直角坐标系中,若一次函数y=kx+6的图象与x轴交于点A,与y轴交于点B,与反比例函数y=$\frac{6}{x}$的图象交于C、D两点,则AD和BC有怎样的数量关系?
同学们通过合作讨论,逐渐完成了对问题的探究.
小勇说:我们可以从特殊入手,取D进行研究(如图①),此时我发现AD=BC.
小攀说:在图①中,分别从点C、D两点向两条坐标轴作垂线,根据所学知识可以知道有两个图形的面积是相等的,并能求出确定的值,而且在图②中,此时S矩形FCHO=S矩形GDIO,这一结论仍然成立,即四边形OHCF的面积=四边形OIDG的面积,此面积的值为6.
小高说:我还发现,在图①或图②中连接某两个已知点,得到的线段与AD和BC都相等,这条线段是GH.

(1)请完成以上填空;
(2)请结合以上三位同学的讨论,对图②所示的情况下,证明AD=BC;
小峰突然提出一个问题:通过刚才的证明,我们可以知道当直线与双曲线的两个交点都在第一象限时,AD=BC总是成立的,但我发现当k的取值不同时,这两个交点有可能在不同象限,结论还成立吗?
(3)请你结合小峰提出的问题,在图③中画出示意图,并判断结论是否成立.若成立,请写出证明过程;若不成立,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.关于x的分式方程$\frac{1}{x-1}$=$\frac{2}{x-a}$有正整数解的a的取值范围是a<2.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.关于函数y=ax2和函数y=ax+a(a≠0)在同一坐标系中的图象,A,B,C,D四位同学各画了一种,你认为可能画对的图象是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.如图,P是抛物线y=-x2+x+2在第一象限上的点,过点P分别向x轴和y轴引垂线,垂足分别为A,B,则四边形OAPB周长的最大值为6.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.在北京2008年第29届奥运会前夕,某超市在销售中发现:奥运会吉祥物“福娃”平均每天可售出20套,每套盈利40元.为了迎接奥运会,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽快减少库存.经市场调查发现:如果每套降价1元,那么平均每天就可多售出2套.
(1)要想平均每天在销售吉祥物上盈利1200元,那么每套应降价多少?
(2)每套吉祥物降价多少元时,才能使每天的利润最大,最大利润为多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.某商场为了吸引顾客设计了一个可以自由转动的转盘,如下图所示,并规定,顾客购买100元的商品,就能获得一次转动转盘的机会,如果转盘停止转动后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得80元、40元、20元的购物券,凭购物券可以在商场继续购物.顾客转动一次转盘时获得三种购物券的可能性各是多大?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.计算:|$\sqrt{2}$-1|+$\root{3}{8}-2$×(-$\frac{1}{2}$)+(-1)2015

查看答案和解析>>

同步练习册答案