16£®Èçͼ1£¬ËıßÐÎABCDÖУ¬AD¡ÎBC£¬¡ÏA=90¡ã£¬BD¡ÍCD£¬AD=$\frac{9}{5}$cm£¬BC=5cm£¬¶¯µãP´ÓµãD³ö·¢£¬ÒÔ1cm/sµÄËÙ¶ÈÑØDB·½ÏòÔ˶¯£¬¶¯µãQÒ²´ÓµãD³ö·¢£¬ÒÔ$\frac{4}{3}$cm/µÄËÙ¶ÈÑØDC·½ÏòÔ˶¯£¬P£¬QÁ½µãͬʱ³ö·¢£¬µ±µãQµ½´ïµãCʱֹͣÔ˶¯£¬µãPÒ²ËæÖ®Í£Ö¹£¬ÉèÔ˶¯Ê±¼äΪsx£¨x£¾0£©£®
£¨1£©ÇóÏß¶ÎDBµÄ³¤£»
£¨2£©ÇëÅжÏPQÓëBCµÄλÖùØÏµ£¬²¢¼ÓÒÔÖ¤Ã÷£»
£¨3£©°éËæP£¬QÁ½µãµÄÔ˶¯£¬½«¡÷DPQÈÆµãPÐýת£¬µÃµ½¡÷PMN£¬µãMÂäÔÚÏß¶ÎPQÉÏ£¬Èô¡÷PMNÓë¡÷DBCµÄÖØµþ²¿·ÖµÄͼÐÎÖܳ¤Îªy£®
¢ÙÇëÇó³öyÓëxÖ®¼äµÄº¯Êý¹ØÏµÊ½£¬²¢Ö¸³ö×Ô±äÁ¿xµÄȡֵ·¶Î§£»
¢ÚÇó³öµ±4£¼y¡Ü5ʱxµÄȡֵ·¶Î§£®

·ÖÎö £¨1£©Ê×ÏÈÖ¤Ã÷¡÷ABD¡×¡÷DCB£¬¸ù¾ÝÏàËÆÈý½ÇÐεĶÔÓ¦±ßµÄ±ÈÏàµÈÇóµÃBDµÄ³¤£»
£¨2£©ÀûÓÃx±íʾ³öDPºÍDQµÄ³¤£¬Ö¤Ã÷¡÷BCD¡×¡÷PQD£¬Ôò¡ÏDPQ=¡ÏDBC£¬¸ù¾ÝƽÐÐÏßµÄÅж¨¶¨ÀíÖ¤Ã÷£»
£¨3£©¢Ù×÷PE¡ÍBCÓÚµãE£¬µ±PE=DQÊÇ£¬NÔÚBCÉÏ£¬ÇóµÃxµÄÖµ£¬È»ºó·Ö³ÉNÔÚBCÒÔǰºÍNÔÚBCϱßÁ½ÖÖÇé¿ö½øÐÐÌÖÂÛ£¬´Ó¶øÇó½â£»
¢ÚÓë¢ÙÏàËÆ·Ö³ÉÁ½ÖÖÇé¿ö£¬¼´¿ÉÁв»µÈʽ´Ó¶øÇó½â£®

½â´ð ½â£º£¨1£©¡ßAD¡ÎBC£¬
¡à¡ÏADB=¡ÏDBC£¬
ÓÖ¡ß¡ÏA=¡ÏBDC=90¡ã£¬
¡à¡÷ABD¡×¡÷DCB£¬
¡à$\frac{AD}{DB}=\frac{DB}{BC}$£¬¼´$\frac{\frac{9}{5}}{DB}=\frac{DB}{5}$£¬
½âµÃ£ºBD=3£»   
£¨2£©ÔÚÖ±½Ç¡÷BCDÖУ¬CD=$\sqrt{B{C}^{2}-B{D}^{2}}$=$\sqrt{{5}^{2}-{3}^{2}}$=4£¬
DP=xcm£¬DQ=$\frac{4}{3}$xcm£®
Ôò$\frac{DP}{DB}=\frac{DQ}{CD}$£¬
ÓÖ¡ß¡ÏBDC=¡ÏPDQ£¬
¡à¡÷BCD¡×¡÷PQD£¬
¡à¡ÏDPQ=¡ÏDBC£¬
¡àPQ¡ÎBC£»
£¨3£©×÷PE¡ÍBCÓÚµãE£®
Ôò¡÷PBE¡×¡÷CBD£¬$\frac{PE}{CD}=\frac{BP}{BC}$£¬¼´$\frac{PE}{4}=\frac{3-x}{5}$£¬ÔòPE=$\frac{4}{5}$£¨3-x£©£¬
ͬÀí£¬DQ=$\frac{4}{3}$PD=$\frac{4}{3}$x£¬PQ=$\frac{5}{3}$x£®
µ±µãNÂäÔÚBC±ßÉÏʱ$\frac{4}{5}$£¨3-x£©=$\frac{4}{3}x$£¬
½âµÃ£ºx=$\frac{9}{8}$£®
¢Ùµ±0£¼x¡Ü$\frac{9}{8}$ʱ£¬y=x+$\frac{4}{3}$x+$\frac{5}{3}$x=4x£» 
µ±$\frac{9}{8}$£¼x¡Ü3ʱ£¬FN=MN-MF=DQ-PE=$\frac{4}{3}$x-$\frac{4}{5}$£¨3-x£©=$\frac{32}{15}$x-$\frac{12}{5}$£¬
ÔòÔÚÖ±½Ç¡÷NFGÖУ¬FG=$\frac{3}{4}$FN=$\frac{3}{4}$£¨$\frac{32}{15}$x-$\frac{12}{5}$£©=$\frac{8}{5}$x-$\frac{9}{5}$£¬
GN=$\frac{5}{4}$x=$\frac{5}{4}$£¨$\frac{32}{15}$x-$\frac{12}{5}$£©=$\frac{8}{3}$x-3£®
ÔòPG=$\frac{5}{3}$x-£¨$\frac{8}{3}$x-3£©=3-x£®
Ôòy=x+$\frac{4}{5}$£¨3-x£©+£¨$\frac{8}{5}$x-$\frac{9}{5}$£©+£¨3-x£©=$\frac{4}{5}$x+$\frac{18}{5}$£»
¢Úµ±0£¼x¡Ü$\frac{9}{8}$ʱ£¬4£¼4x¡Ü5ʱ£¬½âµÃ£º1£¼x¡Ü$\frac{5}{4}$£¬Ôò1£¼x¡Ü$\frac{9}{8}$£»
µ±$\frac{9}{8}$£¼x¡Ü3£¬4£¼$\frac{4}{5}$x+$\frac{18}{5}$¡Ü5ʱ£¬½âµÃ£º$\frac{1}{2}$£¼x¡Ü$\frac{7}{4}$£¬Ôò$\frac{9}{8}$£¼x¡Ü$\frac{7}{4}$£®
×ÜÖ®£¬1£¼x¡Ü$\frac{7}{4}$£®

µãÆÀ ±¾Ì⿼²éÁËÏàËÆÈý½ÇÐεÄÅж¨ÓëÐÔÖÊ£¬¸ù¾ÝÏàËÆÈý½ÇÐεÄÐÔÖÊ£¬ÕýÈ·ÀûÓÃx±íʾ³öͼÐÎÖÐÏß¶ÎGN¡¢PG¡¢DQµÄ³¤¶ÈÊǹؼü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®ÒÑÖªa-b=2004£¬b-c=-2005£¬c-d=2007£¬Ôò$\frac{£¨a-c£©£¨b-d£©}{a-d}$=$-\frac{1}{1003}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®¡÷ABCΪÕýÈý½ÇÐΣ¬D¡¢E¡¢FÈýµÈ·ÖBC¡¢AC¡¢AB£®Èçͼ£¬ÔòS¡÷PQR£ºS¡÷ABC=$\frac{1}{7}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®¶þ´Îº¯Êýy=x2+bx+cµÄͼÏó¶Ô³ÆÖáÊÇx=2£»·½³Ìx2+bx+c=0µÄÁ½¸ù·Ö±ðΪx1¡¢x2ÇÒx12+x22=10
£¨1£©Çó¶þ´Îº¯Êýy=x2+bx+cµÄ¹ØÏµÊ½£»
£¨2£©Èô¶þ´Îº¯Êýy=x2+bx+cµÄͼÏóÓëxÖáµÄ½»µã·Ö±ðΪA¡¢B£¬£¨AÔÚBµÄ×ó±ß£©µãCÔÚxÖáµÄÉÏ·½£¬ÇÒ¡ÏBAC=90¡ã£¬BC=2$\sqrt{2}$£¬½«¡÷ABCÑØxÖáÏòÓÒÆ½ÒÆ£¬µ±µãCÂäÔÚÅ×ÎïÏßÉÏʱ£¬Çó¡÷ABCÆ½ÒÆµÄ¾àÀ룮

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÔÚËıßÐÎABCDÖУ¬AD¡ÎBC£¬µãEÔÚDCÉÏ£¬AEƽ·Ö¡ÏBAD£¬BEƽ·Ö¡ÏABC£®
£¨1£©ÇóÖ¤£º¡ÏAEB=90¡ã£»
£¨2£©ÇóÖ¤£ºAD+BC=AB£»
£¨3£©Èçͼ2£¬¹ýE×÷EF¡ÍCD½»ABÓÚF£¬Èô¡ÏABC=90¡ã£¬¡ÏC=75¡ã£¬BF=2£¬ÇóCDµÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®ÓüÆËãÆ÷¼ÆË㣨-5£©4-2¡Á£¨-3£©2£¬°´¼ü˳Ðò¼°ÏÔʾµÄ½á¹ûΪ£º5y24-2¡Á=607£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®»¯¼òx£¼2|1-$\sqrt{2}$|+1µÄ½á¹ûÊÇ£¨¡¡¡¡£©
A£®x£¼2-$\sqrt{2}$B£®x£¼2$\sqrt{2}$-1C£®x£¼2D£®x£¼$\sqrt{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÒÑÖª£ºÈçͼ£¬AB£¬ACÊÇ¡ÑOµÄÇÐÏߣ¬B£¬CÊÇÇе㣬¹ý$\widehat{BC}$ÉϵÄÈÎÒâÒ»µãP×÷¡ÑOµÄÇÐÏßÓëAB£¬AC·Ö±ð½»ÓÚµãD£¬E£®
£¨1£©Á¬½ÓODºÍOE£¬Èô¡ÏA=50¡ã£¬Ôò¡ÏDOE=65¡ã£»
£¨2£©µ±µãPÔÚ$\widehat{BC}$µÄºÎ´¦Ê±£¬PD=PE£¿ÎªÊ²Ã´£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÔÚ¾ØÐÎABCDÖУ¬µãFÊÇBC±ßÉÏÒ»µã£¬Á¬DE²¢ÑÓ³¤½»ABµÄÑÓ³¤ÏßÓÚF£¬Á¬½ÓAC½»DFÓÚµãO
£¨1£©ÕÒ³öÆäÖеÄÏàËÆÈý½ÇÐΣ»
£¨2£©ÈôCE=3£¬DC=4£¬OD=$\frac{16}{5}$£¬ÇóÖ¤£º¡÷OCE¡×¡÷CDE£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸