精英家教网 > 初中数学 > 题目详情

【题目】如图,已知一次函数y= x+b的图象与反比例函数y= (x<0)的图象交于点A(﹣1,2)和点B,点C在y轴上.

(1)当△ABC的周长最小时,求点C的坐标;
(2)当 x+b< 时,请直接写出x的取值范围.

【答案】
(1)解:作点A关于y轴的对称点A′,连接A′B交y轴于点C,此时点C即是所求,如图所示.

∵反比例函数y= (x<0)的图象过点A(﹣1,2),

∴k=﹣1×2=﹣2,

∴反比例函数解析式为y=﹣ (x<0);

∵一次函数y= x+b的图象过点A(﹣1,2),

∴2=﹣ +b,解得:b=

∴一次函数解析式为y= x+

联立一次函数解析式与反比例函数解析式成方程组:

解得: ,或

∴点A的坐标为(﹣1,2)、点B的坐标为(﹣4, ).

∵点A′与点A关于y轴对称,

∴点A′的坐标为(1,2),

设直线A′B的解析式为y=mx+n,

则有 ,解得:

∴直线A′B的解析式为y= x+

令y= x+ 中x=0,则y=

∴点C的坐标为(0, ).


(2)解:观察函数图象,发现:

当x<﹣4或﹣1<x<0时,一次函数图象在反比例函数图象下方,

∴当 x+ <﹣ 时,x的取值范围为x<﹣4或﹣1<x<0.


【解析】本题考查了反比例函数与一次函数的交点问题、轴对称中的最短线路问题、利用待定系数法求函数解析式以及反比例函数图象上点的坐标特征,解题的关键是:(1)求出直线A′B的解析式;(2)找出交点坐标.本题属于中档题,难度不大,但解题过程稍显繁琐,解决该题型题目时,找出点的坐标,利用待定系数法求出函数解析式是关键.(1)作点A关于y轴的对称点A′,连接A′B交y轴于点C,此时点C即是所求.由点A为一次函数与反比例函数的交点,利用待定系数法和反比例函数图象点的坐标特征即可求出一次函数与反比例函数解析式,联立两函数解析式成方程组,解方程组即可求出点A、B的坐标,再根据点A′与点A关于y轴对称,求出点A′的坐标,设出直线A′B的解析式为y=mx+n,结合点的坐标利用待定系数法即可求出直线A′B的解析式,令直线A′B解析式中x为0,求出y的值,即可得出结论;(2)根据两函数图象的上下关系结合点A、B的坐标,即可得出不等式的解集.
【考点精析】解答此题的关键在于理解确定一次函数的表达式的相关知识,掌握确定一个一次函数,需要确定一次函数定义式y=kx+b(k不等于0)中的常数k和b.解这类问题的一般方法是待定系数法,以及对轴对称-最短路线问题的理解,了解已知起点结点,求最短路径;与确定起点相反,已知终点结点,求最短路径;已知起点和终点,求两结点之间的最短路径;求图中所有最短路径.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在每个小正方形的边长为1的网格中,A,E为格点,B,F为小正方形边的中点,C为AE,BF的延长线的交点.

(1)AE的长等于
(2)若点P在线段AC上,点Q在线段BC上,且满足AP=PQ=QB,请在如图所示的网格中,用无刻度的直尺,画出线段PQ,并简要说明点P,Q的位置是如何找到的(不要求证明)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:

(1)试验观察:

如果经过两点画直线,那么:

组最多可以画____条直线;

组最多可以画____条直线;

组最多可以画____条直线.

(2)探索归纳:

如果平面上有n(n≥3)个点,且任意3个点均不在1条直线上,那么经过两点最多可以画____条直线.(用含n的式子表示)

(3)解决问题:

某班45名同学在毕业后的一次聚会中,若每两人握1次手问好,那么共握____次手.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y=﹣x+3与x轴、y轴分别相交于点B、C,经过B、C两点的抛物线y=ax2+bx+c与x轴的另一个交点为A,顶点为P,且对称轴为直线x=2.

(1)求该抛物线的解析式;
(2)连接PB、PC,求△PBC的面积;
(3)连接AC,在x轴上是否存在一点Q,使得以点P,B,Q为顶点的三角形与△ABC相似?若存在,求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是半圆O的直径,C是半圆O上一点,弦AD平分∠BAC,交BC于点E,若AB=6,AD=5,则DE的长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在正方形ABCD内作∠EAF=45°,AE交BC于点E,AF交CD于点F,连接EF,过点A作AH⊥EF,垂足为H.

(1)如图2,将△ADF绕点A顺时针旋转90°得到△ABG.
①求证:△AGE≌△AFE;
②若BE=2,DF=3,求AH的长.
(2)如图3,连接BD交AE于点M,交AF于点N.请探究并猜想:线段BM,MN,ND之间有什么数量关系?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,边长为4的正方形ABCD内接于点O,点E是 上的一动点(不与A、B重合),点F是 上的一点,连接OE、OF,分别与AB、BC交于点G,H,且∠EOF=90°,有以下结论: ① =
②△OGH是等腰三角形;
③四边形OGBH的面积随着点E位置的变化而变化;
④△GBH周长的最小值为4+
其中正确的是(把你认为正确结论的序号都填上).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解下列方程
(1)x2+x﹣1=0
(2)x(x﹣2)+x﹣2=0.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:在x轴的上方,直角∠BOA绕原点O顺时针方向旋转,若∠BOA的两边分别与函数y=﹣ 、y= 的图像交于B、A两点,则tanA=

查看答案和解析>>

同步练习册答案