【题目】如图,在平面直角坐标系中,直线y=2x与反比例函数y= 在第一象限内的图象交于点A(m,2),将直线y=2x向下平移后与反比例函数y= 在第一象限内的图象交于点P,且△POA的面积为2.
(1)求k的值.
(2)求平移后的直线的函数解析式.
【答案】
(1)解:∵点A(m,2)在直线y=2x,
∴2=2m,
∴m=1,
∴点A(1,2),
∵点A(1,2)在反比例函数y= 上,
∴k=2
(2)解:如图,
设平移后的直线与y轴相交于B,过点P作PM⊥OA,BN⊥OA,AC⊥y轴
由(1)知,A(1,2),
∴OA= ,sin∠BON=sin∠AOC= = ,
∵S△POA= OA×PM= × PM=2,
∴PM= ,
∵PM⊥OA,BN⊥OA,
∴PM∥BN,
∵PB∥OA,
∴四边形BPMN是平行四边形,
∴BN=PM= ,
∵sin∠BON= = = ,
∴OB=4,
∵PB∥AO,
∴B(0,﹣4),
∴平移后的直线PB的函数解析式y=2x﹣4
方法二、如图1,过点P作PC⊥y轴交OA于C,
设点P的坐标为(n, )(n>1),
∴C( , ),∴PC=n﹣ ,
∵△POA的面积为2.A(1,2)
∴S△POA=S△PCO+S△PCA
= (n﹣ )× + (n﹣ )(2﹣ )
= (n﹣ )×2
=n﹣
=2,
∴n=1﹣ (舍)或n=1+ ,
∴P(1+ ,2 ﹣2)
∴PB∥AO,
∴设直线PB的解析式为y=2x+b,
∵点P在直线PB上,
∴2 ﹣2=2(1+ )+b,
∴b=﹣4,
∴平移后的直线PB的函数解析式y=2x﹣4,
【解析】(1)由点A的纵坐标求得m,即点A的坐标,把A点的坐标代入反比例函数中即可;(2)先求出PM,再求出BN然后用锐角三角函数求得OB即可。
科目:初中数学 来源: 题型:
【题目】如图是明明设计的智力拼图玩具的一部分,现在明明遇到了两个问题,请你帮助解决:
问题1:∠D=32°,∠ACD=60°,为保证AB∥DE,则∠A等于多少度?
问题2:∠G,∠GFH,∠H之间有什么样的关系时,GP∥HQ?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,∠ACB=90°,∠A=30°,AB=16.点P是斜边AB上一点.过点P作PQ⊥AB,垂足为P,交边AC(或边CB)于点Q,设AP=x,△APQ的面积为y,则y与x之间的函数图象大致为( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,且AB=6,C是⊙O上一点,D是 的中点,过点D作⊙O的切线,与AB,AC的延长线分别交于点E,F,连接AD.
(1)求证:AF⊥EF;
(2)填空:
①当BE=时,点C是AF的中点;
②当BE=时,四边形OBDC是菱形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点M、N分别是正五边形ABCDE的边BC、CD上的点,且BM=CN,AM交BN于点P.
(1)求证:△ABM≌△BCN;
(2)求∠APN的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知△ABC中,BE平分∠ABC,点P在射线BE上.
(1)如图1,若∠ABC=40°,CP∥AB,求∠BPC的度数;
(2)如图2,若∠BAC=100°,∠PBC=∠PCA,求∠BPC的度数;
(3)若∠ABC=40°,∠ACB=30°,直线CP与△ABC的一条边垂直,画出相应图形并求∠BPC的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某手机经销商计划同时购进一批甲、乙两种型号的手机,若购进2部甲型号手机和1部乙型号手机,共需要资金2800元;若购进3部甲型号手机和2部乙型号手机,共需要资金4600元
(1) 求甲、乙型号手机每部进价为多少元?
(2) 该店计划购进甲、乙两种型号的手机销售,预计用不多于1.8万元且不少于1.74万元的资金购进这两部手机共20台,请问有几种进货方案?请写出进货方案
(3) 售出一部甲种型号手机,利润率为40%,乙型号手机的售价为1280元.为了促销,公司决定每售出一台乙型号手机,返还顾客现金m元,而甲型号手机售价不变,要使(2)中所有方案获利相同,求m的值
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在边长为 2 的正方形 ABCD 中剪去一个边长为 1 的小正方形 EFGD ,动点 P 从点 A 出发,沿A E F G C B 的路线,绕多边形的边匀速运动到点 B 时停止,则 ABP 的面积 S 随着时间t 变化的函数图象大致是( )
A.B.C.D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com