【题目】(1)如图1,△ABC与△ADE均是顶角为40°的等腰三角形,BC、DE分别是底边,求证:BD=CE;
(2)如图2,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE.
填空:∠AEB的度数为 ;线段BE与AD之间的数量关系是 .
(3)拓展探究
如图3,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E在同一直线上,CM为△DCE中DE边上的高,连接BE.请判断∠AEB的度数及线段CM、AE、BE之间的数量关系,并说明理由.
【答案】(1)详见解析;(2)∠AEB的度数为60°;线段BE与AD之间的数量关系是:BE=AD;(3)详见解析.
【解析】试题分析:
(1) 根据已知条件可知,要想证明BD=CE,可以证明△BAD与△CAE全等. 根据已知条件中关于等腰三角形的叙述,可以得到AB=AC,AD=AE. 由于这两个等腰三角形的顶角均为40°,所以这两个顶角分别减去∠DAC也一定相等. 综合上述条件,利用SAS可以证明△BAD与△CAE全等,进而证明BD=CE.
(2) 根据已知条件不难利用SAS证明△ACD和△BCE全等. 利用全等三角形的相关性质,可以得到AD=BE,即线段BE与AD之间的数量关系是BE=AD. 同理,根据全等三角形的性质可知∠ADC=∠BEC. 根据等边三角形的性质和邻补角的相关结论可知,∠BEC=∠ADC=120°. 利用等边三角形的性质即可求得∠AEB的度数.
(3) 通过两个直角与∠DCB的和差关系可以得到∠ACD=∠BCE,再结合等腰直角三角形的性质,不难利用SAS证明△ACD和△BCE全等. 利用全等三角形的性质可以得到AD=BE. 根据等腰直角三角形的性质,可以得到CM=DM=EM. 综上所述,AE=AD+DE=BE+2CM.
试题解析:
(1) 证明:∵∠BAC=∠DAE=40°,
∴∠BAC-∠DAC=∠DAE-∠DAC,即∠BAD=∠CAE.
∵△ABC与△ADE分别是以BC与DE为底边的等腰三角形,
∴AB=AC,AD=AE.
∵在△BAD和△CAE中,
,
∴△BAD≌△CAE (SAS),
∴BD=CE.
(2) 本小题应依次填写:60°;BE=AD. 理由如下.
∵△ACB和△DCE均为等边三角形,
∴AC=BC,CD=CE,∠ACB=∠DCE=60°.
∴∠ACB-∠DCB=∠DCE-∠DCB,即∠ACD=∠BCE.
∵在△ACD和△BCE中,
,
∴△ACD≌△BCE (SAS),
∴AD=BE,∠ADC=∠BEC.
∵△DCE为等边三角形,
∴∠CDE=∠CED=60°,
∵点A,D,E在同一直线上,
∴∠ADC=180°-∠CDE=180°-60°=120°,
∴∠BEC=∠ADC=120°,
∴∠AEB=∠BEC-∠CED=120°-60°=60°.
综上所述,∠AEB的度数为60°;线段BE与AD之间的数量关系是:BE=AD.
(3) ∠AEB的度数为90°;线段CM,AE,BE之间的数量关系是:AE=BE+2CM. 理由如下.
∵△ACB和△DCE均为等腰直角三角形且∠ACB=∠DCE=90°,
∴AC=BC,CD=CE,∠CDE=∠CED=45°.
∵∠ACB=∠DCE=90°,
∴∠ACB-∠DCB=∠DCE-∠DCB,即∠ACD=∠BCE.
∵在△ACD和△BCE中,
,
∴△ACD≌△BCE (SAS),
∴AD=BE,∠ADC=∠BEC,
∵∠CDE=45°,
又∵点A,D,E在同一直线上,
∴∠ADC=180°-∠CDE=180°-45°=135°,
∴∠BEC=∠ADC=135°.
∵∠BEC=135°,∠CED=45°,
∴∠AEB=∠BEC-∠CED=135°-45°=90°.
∵CM为△DCE中DE边上的高,即CM⊥DE,
∴在等腰直角三角形DCE中,DM=EM.
∵CM⊥DE,∠CDE=45°,
∴△CMD是等腰直角三角形,
∴CM=DM.
∴CM=DM=EM.
∵DE=DM+EM=2CM,
又∵AD=BE,
∴AE=AD+DE=BE+2CM.
科目:初中数学 来源: 题型:
【题目】如图是二次函数:y=ax2+bx+c(a≠0)的图象,下列说法错误的是( )
A. 函数y的最大值是4 B. 函效的图象关于直线x=﹣1对称
C. 当x<﹣1时,y随x的增大而增大 D. 当﹣4<x<1时,函数值y>0
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,宏达蔬菜基地内有一块长为216m,宽为108m的长方形土地,三条宽均为xm的田间小路把它分成面积相等的六块,分别种植西红柿、黄瓜、辣椒、芸豆、韭菜、茄子.
(1)求每块种植蔬菜的长方形的面积.(用含x的多项式表示)
(2)当x=1.6m时,求每块种植蔬菜的长方形的面积.(精确到0.01m2)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明将前年春节所得的压岁钱买了一个某银行的两年期的理财产品,该理财产品的年回报率为4.5%,银行告知小明今年春节他将得到利息288元,则小明前年春节的压岁钱为( )
A.6400元
B.3200元
C.2560元
D.1600元
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,△ABC的边BC在直线l上,AC⊥BC,且AC=BC;△EFP的边FP也在直线l上,边EF与边AC重合,且EF=FP.
(1)示例:在图1中,通过观察、测量,猜想并写出AB与AP所满足的数量关系和位置关系.
答:AB与AP的数量关系和位置关系分别是 、 .
(2)将△EFP沿直线l向左平移到图2的位置时,EP交AC于点Q,连结AP,BQ.请你观察、测量,猜想并写出BQ与AP所满足的数量关系和位置关系.答:BQ与AP的数量关系和位置关系分别是 、 .
(3)将△EFP沿直线l向左平移到图3的位置时,EP的延长线交AC的延长线于点Q,连结AP、BQ.你认为(2)中所猜想的BQ与AP的数量关系和位置关系还成立吗?若成立,给出证明;若不成立,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在平面直角坐标系xOy中,抛物线y=ax2﹣4ax+1与x轴的正半轴交于点A和点B,与y轴交于点C,且OB=3OC,点P是第一象限内的点,连接BC,△PBC是以BC为斜边的等腰直角三角形.
(1)求这个抛物线的表达式;
(2)求点P的坐标;
(3)点Q在x轴上,若以Q、O、P为顶点的三角形与以点C、A、B为顶点的三角形相似,求点Q的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com