【题目】据农业农村部新闻部办公室2018年10月15日消息,江宁省发现疑似非洲猪瘟疫情,此次猪瘟疫情发病急,蔓延速度快.当政府和企业迅速进行了猪瘟疫情排査和处置.在疫情排査过程中.某农场第一天发现3头生猪发病.两天后发现共有363头生猪发病,求每头发病生猪平均每天传染多少头生猪?
科目:初中数学 来源: 题型:
【题目】已知在Rt△OAB中,∠OAB=90°,∠BOA=30°,AB=2.若以O为坐标原点,OA所在直线为x轴,建立如图所示的平面直角坐标系,点B在第一象限内.将Rt△OAB沿OB折叠后,点A落在第一象限内的点C处.
(1)求点C的坐标;
(2)若抛物线y=ax2+bx(a≠0)经过C、A两点,求此抛物线的解析式;
(3)若抛物线的对称轴与OB交于点D,点P为线段DB上一点,过P作y轴的平行线,交抛物线于点M.问:是否存在这样的点P,使得四边形CDPM为等腰梯形?若存在,请求出此时点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】
如图,正比例函数与反比例函数的图象交于点。
(1)求这两个函数的表达式;
(2)如图1,若,且其两边分别与两坐标轴的正半轴交于点、点。求四边形的面积;
(3)如图2,点是反比例函数图象上的一点,过点作x轴、轴的垂线,垂足分别为、,交直线于点,过作x轴的垂线,垂足为。设点的横坐标为,当时,是否存在点,使得四边形为正方形?若存在,求出点坐标;若不存在,请说明理由。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,如图,在中,AC=BC,点D是边AB的中点,E,F分别是AC和BC的中点,分别以CE,CF为一边向上作两个全等的矩形CEGH和矩形CFMN(其中EG=FM),依次连结DG、DM、GM。
(1)求证:是等腰三角形。
(2)如图,若将上图中的两个全等的矩形改为两个全等的正三角形(和),其他条件不变。请探究的形状,并说明理由。
(3)若将上图中的两个全等的矩形改为两个正方形,并把中的边BC缩短到如图形状,请探究的形状,并说明理由。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AD和BE是高,∠ABE=45°,点F是AB的中点,AD与FE、BE分别交于点G、H,∠CBE=∠BAD.有下列结论:①FD=FE;②AH=2CD;③BCAD=AE2;④∠DFE=2∠DAC ;⑤若连接CH,则CH∥EF.其中正确的个数为( )
A. 2个 B. 3个 C. 4个 D. 5个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC是定圆O的内接三角形,AD为△ABC的高线,AE平分∠BAC交⊙O于E,交BC于G,连OE交BC于F,连OA,在下列结论中, ①CE=2EF,②△ABG∽△AEC,③∠BAO=∠DAC,④为常量.其中正确的有______.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com