【题目】如图,已知抛物线与轴的一个交点.
(1)试分别求出这条抛物线与轴的另一个交点及与轴的交点的坐标.
(2)设抛物线的顶点为,请在图中画出抛物线的草图,若点在直线上,试判断点是否在经过点的反比例函数的图象上,并说明理由;
(3)试求的值.
【答案】(1),;(2)详见解析;(3).
【解析】
(1)把A点的坐标代入抛物线的解析式,就可以求出m的值,得到抛物线的解析式.在解析式中令y=0,解方程就可以求出与x轴的交点;(2)根据函数解析式就可求出抛物线的顶点坐标,利用待定系数法求出反比例函数的解析式.经过C,B的直线解析式可以用待定系数法求得,进而求出E点的坐标.把E的坐标代入反比例函数解析式,就可以判断是否在反比例函数的图象上;(3)过D作DF⊥y轴于点F,则△CFD为等腰直角三角形,△AOC是等腰直角三角形,根据勾股定理就可以求出CD,AC的长度.Rt△ADC中根据三角函数的定义就可以求出三角函数值.
解:(1)因为在抛物线上,
则,解得.
所以抛物线的解析式为.
因为点为抛物线与轴的交点,求得,
因为点为抛物线与轴的交点,求得.
(2)∵,
∴顶点,
画这个函数的草图.
由,点的坐标可求得直线的解析式为,
∵点在上,
∴.
可求得过点的反比例函数的解析式为.
当时,.
∴点不在过点的反比例函数图象上.
(3)过作轴于点,则为等腰直角三角形,且.
连接,则为等腰直角三角形,且.
因为,
∴中,.
另解:∵,
∴.
∵,
∴.
科目:初中数学 来源: 题型:
【题目】如图是根据对某区初中三个年级学生课外阅读的“漫画丛书”、“科普常识”、“名人传记”、“其它”中,最喜欢阅读的一种读物进行随机抽样调查,并绘制了下面不完整的条形统计图和扇形统计图(每人必选一种读物,并且只能选一种),根据提供的信息,解答下列问题:
(1)求该区抽样调查人数;
(2)补全条形统计图,并求出最喜欢“其它”读物的人数在扇形统计图中所占的圆心角度数;
(3)若该区有初中生14400人,估计该区有初中生最喜欢读“名人传记”的学生是多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:中,.
如图1,若,,,且,求AD的长;
如图2,请利用没有刻度的直尺和圆规,在线段AB上找一点F,使得点F到边AC的距离等于注:不写作法,保留作图痕迹,对图中涉及到的点用字母进行标注
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠BAC=90°,AD是高,BE是中线,CF是角平分线,CF交AD于G,交BE于H.下列结论:①S△ABE=S△BCE;②∠AFG=∠AGF;③∠FAG=2∠ACF;④BH=CH.其中所有正确结论的序号是
A.①②③④B.①②③C.②④D.①③
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某地区遭受严重的自然灾害,空军某部队奉命赶灾区空投物资,已知空投物资离开飞机后在空中沿抛物线降落,抛物线顶点为机舱航口,如图所示,如果空投物资离开处后下落的垂直高度米时,它测处的水平距离米,那么要使飞机在垂直高度米的高空进行空投,物资恰好准确地落在居民点处,飞机到处的水平距离应为________米.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示经过原点,给出以下四个结论:①abc=0,②a+b+c>0,③2a>b,④4ac﹣b2<0;其中正确的结论有( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F.
(1)在图1中说明CE=CF;
(2)若∠ABC=90°,G是EF的中点(如图2),求∠BDG的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在“母亲节”期间,某校部分团员参加社会公益活动,准备购进一批许愿瓶进行销售,并将所得利润捐助给慈善机构.根据市场调查,这种许愿瓶一段时间内的销售量 (单位:个)与销售单价 (单位:元/个)之间的对应关系如图所示:
(1) 与之间的函数关系是 .
(2)若许愿瓶的进价为6元/个,按照上述市场调查的销售规律,求销售利润 (单位:元)与销售单价 (单位:元/个)之间的函数关系式;
(3)若许愿瓶的进货成本不超过900元,要想获得最大利润,试确定这种许愿瓶的销售单价,并求出此时的最大利润.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com