精英家教网 > 初中数学 > 题目详情

【题目】如图,平行四边形ABCD在平面直角坐标系中,AD=6,若OA,OB的长是关于x的一元二次方程的两个根,且OA>OB.

(1)若点Ex轴上的点,且△AOE的面积为.

求:①点E的坐标;②证明:△AOE∽△DAO;

(2)若点M在平面直角坐标系中,则在直线AB上是否存在点F,使以A,C,F,M为顶点的四边形为菱形?若存在,请直接写出F点的坐标;若不存在,请说明理由.

【答案】(1)详见解析;(2)

【解析】

(1)①解一元二次方程求出OA,OB的长度,根据三角形的面积求出点E的坐标.
②分别求出两三角形夹直角的两对应边的比,如果相等,则两三角形相似,否则不相似;
(2)根据菱形的性质,分ACAF是邻边并且点F在射线AB上与射线BA上两种情况,以及ACAF分别是对角线的情况分别进行求解计算.

(1)

(x3)(x4)=0,

x3=0,x4=0,

解得

OA>OB

OA=4,OB=3,

∵点Ex轴上

E点的坐标为

②在AOEDAO, AD=6

又∵

AOEDAO

(2)根据计算的数据,OB=OC=3,

AO平分∠BAC

ACAF是邻边,点F在射线AB上时,AF=AC=5,

所以点FB重合,

F(3,0),

ACAF是邻边,点F在射线BA上时,M应在直线AD上,且FC垂直平分AM

F(3,8).

AC是对角线时,AC垂直平分线L,AC解析式为,直线L k值为 (平面内互相垂直的两条直线k值乘积为1),

L解析式为 联立直线L与直线AB求交点,

F;

AF是对角线时,CAB垂线,垂足为N,根据等积法求出勾股定理得出,AA关于N的对称点即为F,Fy轴垂线,垂足为G,

F

综上所述,满足条件的点有四个:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某商家独家销售具有地方特色的某种商品每件进价为40元.经过市场调查一周的销售量y件与销售单价xx≥50)/件的关系如下表

(1)直接写出yx的函数关系式

(2)设一周的销售利润为S请求出Sx的函数关系式并确定当销售单价在什么范围内变化时一周的销售利润随着销售单价的增大而增大?

(3)雅安地震牵动亿万人民的心商家决定将商品一周的销售利润全部寄往灾区在商家购进该商品的货款不超过10000元情况下请你求出该商家最大捐款数额是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:

数学活动课上,李老师给出如下定义:如果一个三角形有一边上的中线等于这条边的一半,那么称三角形为智慧三角形.

理解:

如图,已知上两点,请在圆上找出满足条件的点,使智慧三角形(画出点的位置,保留作图痕迹);

如图,在正方形中,的中点,上一点,且,试判断是否为智慧三角形,并说明理由;

运用:

如图,在平面直角坐标系中,的半径为,点是直线上的一点,若在上存在一点,使得智慧三角形,当其面积取得最小值时,直接写出此时点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙O是梯形ABCD的内切圆,ABDC,E、M、F、N分别是边AB、BC、CD、DA上的切点.

(1)求证:AB+CD=AD+BC

(2)求∠AOD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有3,4,5,x,甲乙两人每次同时从袋中各随机摸出1个小球,并计算摸出的这2个小球上数字之和,记录后都将小球放回袋中搅匀,进行重复试验,试验数据如图:

解答下列问题:

(1)如果试验继续进行下去,根据上表数据,出现“和为8”的频率将稳定在它的概率附近,估计出现“和为8”的概率是 .

(2)如果摸出的这两个小球上的数字之和为9的概率是,那么x的值可以取7吗?请用列表法或画树状图法说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线yx2﹣2mx+m2﹣3(m是常数).

(1)证明无论m取什么实数该抛物线与x轴都有两个交点

(2)设抛物线的顶点为Ax轴两个交点分别为BDBD的右侧y轴的交点为C

求证m取不同值时,△ABD都是等边三角形

|m|≤m≠0,△ABC的面积是否有最大值如果有请求出最大值如果没有请说明理由

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读材料:

材料1、若一元二次方程ax2+bx+c=0(a≠0)的两根为x1,x2,则x1+x2=,x1x2=

材料2、已知实数m、n满足m2﹣m﹣1=0,n2﹣n﹣1=0,且m≠n,求的值.

解:由题知m、n是方程x2﹣x﹣1=0的两个不相等的实数根,根据材料1

m+n=1,mn=﹣1

根据上述材料解决下面问题;

(1)一元二次方程2x2+3x﹣1=0的两根为x1、x2,则x1+x2=   ,x1x2=   

(2)已知实数m、n满足2m2﹣2m﹣1=0,2n2﹣2n﹣1=0,且m≠n,求m2n+mn2的值.

(3)已知实数p、q满足p2=3p+2,2q2=3q+1,且p≠2q,求p2+4q2的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①a,b同号;②当x=1和x=3时,函数值相等;③4a+b=0;④当﹣1<x<5时,y<0.其中正确的有(  )

A. ①② B. ②③ C. ①③④ D. ②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为积极响应市委政府“加快建设天蓝水碧地绿的美丽长沙”的号召,我市某街道决定从备选的五种树中选购一种进行栽种.为了更好地了解社情民意,工作人员在街道辖区范围内随机抽取了部分居民,进行“我最喜欢的一种树”的调查活动(每人限选其中一种树),并将调查结果整理后,绘制成如图两个不完整的统计图:

请根据所给信息解答以下问题:

(1)这次参与调查的居民人数为:   

(2)请将条形统计图补充完整;

(3)请计算扇形统计图中“枫树”所在扇形的圆心角度数;

(4)已知该街道辖区内现有居民8万人,请你估计这8万人中最喜欢玉兰树的有多少人?

查看答案和解析>>

同步练习册答案