【题目】如图,AB是⊙O的直径,过点B作⊙O的切线BM,点A,C,D分别为⊙O的三等分点,连接AC,AD,DC,延长AD交BM于点E,CD交AB于点F.
(1)求证:CD∥BM;
(2)连接OE,若DE=m,求△OBE的周长.
【答案】(1)见解析;(2)
【解析】
(1)由 点A、C、D为⊙O的三等分点,可证得△ACD为等边三角形,AB⊥CD ,BE⊥AB ,可得CD∥BM.
(2) 接DB,如图, 可得∠C=60°,∠ABD=∠C=60°,∠DBE=30°,
在Rt△DBE中,BE=2DE=2m,DB=DE=m.
在Rt△ADB中,AB=2BD=2m,则OB=m,
在Rt△OBE中,OE==m,
可得△OBE周长.
(1)证明:∵点A、C、D为⊙O的三等分点,
∴,
∴AD=DC=AC.
∴△ACD为等边三角形,
而点O为△ACD的外心,
∴AB⊥CD.
∵BM为⊙O的切线,
∴BE⊥AB.
∴CD∥BM;
(2)解:连接DB,如图,
∵△ACD为等边三角形,
∴∠C=60°,
∴∠ABD=∠C=60°,
∴∠DBE=30°,
在Rt△DBE中,BE=2DE=2m,DB=DE=m.
在Rt△ADB中,AB=2BD=2m,则OB=m,
在Rt△OBE中,OE==m,
∴△OBE周长为2m+m+m=(2++)m.
科目:初中数学 来源: 题型:
【题目】如图, 为⊙的直径,弦于点,点是上一点,连结, .
()在下添辅助线的前提下直接写出图中与相等的角,不用证明.
()求证:当时, 与相似.
()若,求的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=﹣x+4的图象与反比例y=(k为常数,且k≠0)的图象交于A(1,a),B两点.
(1)求反比例函数的表达式及点B的坐标;
(2)在x轴上找一点P,使PA+PB的值最小,求PA+PB的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AB是⊙的直径,AC是弦,点P是BA延长线上一点,连接PC、BC,且∠PCA=∠B.(1)求证:PC是⊙O的切线;(2)若PC=6,PA=4,求直径AB的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,∠AOB=90°,AO=OB,C、D是弧AB上的两点,∠AOD>∠AOC,
(1)0<sin∠AOC<sin∠AOD<1;
(2)1>cos∠AOC>cos∠AOD>0;
(3)锐角的正弦函数值随角度的增大而______;
(4)锐角的余弦函数值随角度的增大而______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,过y轴上一个动点M作x轴的平行线,交双曲线y= 于点A,交双曲线于点B,点C、点D在x轴上运动,且始终保持DC=AB,则平行四边形ABCD的面积是( )
A. 7 B. 10 C. 14 D. 28
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知,正方形ABCD和一个圆心角为45°的扇形,圆心与A点重合,此扇形绕A点旋转时,两半径分别交直线BC、CD于点P.K.
(1)当点P、K分别在边BC.CD上时,如图(1),求证:BP+DK=PK.
(2)当点P、K分别在直线BC.CD上时,如图(2),线段BP、DK、PK之间又有怎样的数量关系,请直接写出结论.
(3)在图(3)中,作直线BD交直线AP、AK于M、Q两点.若PK=5,CP=4,求PM的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(8分)如图,在10×10的正方形网格中,点A,B,C,D均在格点上,以点A为位似中心画四边形AB′C′D′,使它与四边形ABCD位似,且相似比为2.
(1)在图中画出四边形AB′C′D′;
(2)填空:△AC′D′是 三角形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=﹣x2+bx+c与直线y=﹣x+m相交于第一象限内不同的两点A(4,n),B(1,4),
(1)求此抛物线的解析式.
(2)抛物线上是否存点P,使直线OP将线段AB平分?若存在直接求出P点坐标;若不存在说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com