精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,⊙P的圆心坐标是(5,a)(a>5),半径为5,函数y=x的图象被⊙P截得的弦AB的长为8,则a的值是( )

A. 8 B. 5+3 C. 5 D. 5+

【答案】B

【解析】如图,作PC⊥x轴于C,交ABD,作PE⊥ABE,连结PB,

∵⊙P的圆心坐标是(5,a),

∴OC=5,PC=a,

x=5代入y=xy=5,

∴D点坐标为(5,5),

∴CD=5,

∴△OCD为等腰直角三角形,

∴△PED也为等腰直角三角形,

∵PE⊥AB,

AE=BE=AB=×8=4,

Rt△PBE中,PB=5,BE=4,根据勾股定理求得PE=3.

∵△PED为等腰直角三角形,

PD=.

PC=PD+CD=+5.

a=+5.

故选B.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,ADBCDBD=ADDG=DCEF分别是BGAC的中点.

1)求证:DE=DFDEDF

2)连接EF,若AC=10,求EF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在平面直角坐标系中,直线与坐标轴交于AB两点,以AB为斜边在第一象限内作等腰直角三角形ABC,点C为直角顶点,连接OC.

(1)直接写出= ;

(2)请你过点CCEy轴于E点,试探究OB+OACE的数量关系,并证明你的结论;

(3)若点MAB的中点,点NOC的中点,求MN的值;

(4)如图2,将线段AB绕点B沿顺时针方向旋转至BD,且ODAD,延长DO交直线于点P,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形AOBC中,OB=4,OA=3,分别以OB,OA所在直线为x轴、y轴建立平面直角坐标系,F是BC边上的点,过F点的反比例函数y=(k>0)的图象与AC边交于点E.若将△CEF沿EF翻折后,点C恰好落在OB上的点D处,则点F的坐标为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,城市规划部门计划在城市广场的一块长方形空地上修建乙面积为1500m2的停车场,将停车场四周余下的空地修建成同样宽的通道,已知长方形空地的长为60m,宽为40m.

(1)求通道的宽度;

(2)某公司承揽了修建停车场的工程(不考虑修通道),为了尽量减少施工对城市交通的影响,实施施工时,每天的工作效率比原计划增加了20%,结果提前2天完成任务,求该公司原计划每天修建多少m2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将正方形ABCD绕点A逆时针旋转30°得到AB′C′D′,如果AB=1,点CC′的距离为(  )

A. B. C. 1 D. ﹣1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】学校召集留守儿童过端午节,桌上摆有甲、乙两盘粽子,每盘中盛有白粽2个,豆沙粽1个,肉粽1个(粽子外观完全一样).

(1)小明从甲盘中任取一个粽子,取到豆沙粽的概率是

(2)小明在甲盘和乙盘中先后各取了一个粽子,请用树状图或列表法求小明恰好取到两个白粽子的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】西安某学校为了改善办学条件,计划购置一批电子白板和台式电脑.经招投标,购买一台电子白板比购买2台台式电脑多3000元,购买2台电子白板和3台台式电脑共需2.7万元.

(1)设购买一台台式电脑需元,购买一台电子白板需 (用含的代数式表示)

(2)求购买一台电子白板和一台台式电脑各需多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】江南农场收割小麦,已知1台大型收割机和3台小型收割机1小时可以收割小麦1.4公顷,2台大型收割机和5台小型收割机1小时可以收割小麦2.5公顷.

(1)每台大型收割机和每台小型收割机1小时收割小麦各多少公顷?

(2)大型收割机每小时费用为300元,小型收割机每小时费用为200元,两种型号的收割机一共有10台,要求2小时完成8公顷小麦的收割任务,且总费用不超过5400元,有几种方案?请指出费用最低的一种方案,并求出相应的费用.

查看答案和解析>>

同步练习册答案