精英家教网 > 初中数学 > 题目详情

【题目】RtABC中,∠C=90°,斜边c=5,两直角边的长ab是关于x的一元二次方程的两个根,则RtABC中较短的直角边长为__________.

【答案】3

【解析】

根据一元二次方程的根与系数的关系求得m的值后,再求得方程的解.

∵a,b是方程x2-mx+2m-2=0的解,
∴a+b=m,ab=2m-2,
Rt△ABC中,由勾股定理得,a2+b2=c2
a2+b2=(a+b)2-2ab,c=5,
∴a2+b2=(a+b)2-2ab=25,
即:m2-2(2m-2)=25
解得,m1=7,m2=-3,

∵a,bRt△ABC的两条直角边的长.
∴a+b=m>0,m=-3不合题意,舍去.
∴m=7,
m=7时,原方程为x2-7x+12=0,
解得,x1=3,x2=4,

所以RtABC的三条边分别为5、4、3,最小边为3.

故答案是:3.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在长度为1个单位长度的小正方形组成的正方形中,点ABC在小正方形的顶点上.

1)在图中画出与ABC关于直线l成轴对称的AB′C′

2ABC的面积为   

3)以AC为边作与ABC全等的三角形,则可作出   个三角形与ABC全等;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,以∠AOB的顶点O为圆心,适当长为半径画弧,交OA于点C,交OB于点D,再分别以点CD为圆心,大于CD的长为半径画弧,两弧在∠AOB内部交于点E,作射线OE,连接CD,以下说法错误的是(

A.OCD是等腰三角形B.CD垂直平分OE

C.EOAOB的距离相等D.证明射线OE是角平分线的依据是SSS

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的一元二次方程(x﹣3)(x﹣2=|m|

1)求证:对于任意实数m,方程总有两个不相等的实数根;

2)若方程的一个根是1,求m的值及方程的另一个根.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算下列各题:

1)(﹣12018+32﹣(π3.140

2)(x+32x2

3)(x+2)(3xy)﹣3xx+y

4)(2x+y+1)(2x+y1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】太阳能光伏建筑是现代绿色环保建筑之一,老张准备把自家屋顶改建成光伏瓦面,改建前屋顶截面ABC如图2所示,BC=10米,∠ABC=ACB=36°,改建后顶点DBA的延长线上,且∠BDC=90°,求改建后南屋面边沿增加部分AD的长.(结果精确到0.1米)

(参考数据:sin18°≈0.31,cos18°≈0.95.tan18°≈0.32,sin36°≈0.59.cos36°≈0.81,tan36°≈0.73)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在下列各组条件中,不能说明的是(

A.AB=DE,∠B=E,∠C=FB.AB=DE,∠A=D,∠B=E

C.AC=DFBC=EF,∠A=DD.AB=DEBC=EFAC=ED

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角坐标系中,点AB分别在xy轴上,点COB的中点,BECD都与x轴平行,BDAB,∠ABO=30°

1)判断△OBD的形状;

2)若A-30),BE=6,求证OE=AD

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】填空并完成以下证明:

已知:点P在直线CD上,∠BAP+∠APD=180°,∠1=∠2.

求证:AB∥CD,∠E=∠F.

证明:∵∠BAP+∠APD=180°,(已知)

∴AB∥   .(   

∴∠BAP=   .(   

∵∠1=∠2,(已知)

∠3=   ﹣∠1,

∠4=   ﹣∠2,

∴∠3=   (等式的性质)

∴AE∥PF.(   

∴∠E=∠F.(   

查看答案和解析>>

同步练习册答案