精英家教网 > 初中数学 > 题目详情

【题目】我们可以通过类比联想,引申拓展研究典型题目,可达到解一题知一类的目的,下面是一个案例,请补充完整
原题:如图1,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF,则EF=BE+DF,试说明理由.

(1)思路梳理
∵AB=AD,
∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合.
∵∠ADC=∠B=90°,
∴∠FDG=180°,点F、D、G共线.
根据 , 易证△AFG≌ , 得EF=BE+DF.
(2)类比引申
如图2,四边形ABCD中,AB=AD,∠BAD=90°点E、F分别在边BC、CD上,∠EAF=45°.若∠B、∠D都不是直角,则当∠B与∠D满足等量关系时,仍有EF=BE+DF.
(3)联想拓展
如图3,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE=45°.猜想BD、DE、EC应满足的等量关系,并写出推理过程.

【答案】
(1)SAS;△AFG
(2)∠B+∠D=180°
(3)

解:猜想:DE2=BD2+EC2

证明:连接DE′,根据△AEC绕点A顺时针旋转90°得到△ABE′,

∴△AEC≌△ABE′,

∴BE′=EC,AE′=AE,

∠C=∠ABE′,∠EAC=∠E′AB,

在Rt△ABC中,

∵AB=AC,

∴∠ABC=∠ACB=45°,

∴∠ABC+∠ABE′=90°,

即∠E′BD=90°,

∴E′B2+BD2=E′D2

又∵∠DAE=45°,

∴∠BAD+∠EAC=45°,

∴∠E′AB+∠BAD=45°,

即∠E′AD=45°,

在△AE′D和△AED中,

∴△AE′D≌△AED(SAS),

∴DE=DE′,

∴DE2=BD2+EC2


【解析】解:(1)∵AB=AD,
∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合.
∴∠BAE=∠DAG,
∵∠BAD=90°,∠EAF=45°,
∴∠BAE+∠DAF=45°,
∴∠EAF=∠FAG,
∵∠ADC=∠B=90°,
∴∠FDG=180°,点F、D、G共线,
在△AFE和△AFG中,

∴△AFE≌△AFG(SAS),
∴EF=FG,
即:EF=BE+DF,
故答案为:SAS;△AFG;(2)∠B+∠D=180°时,EF=BE+DF;
∵AB=AD,
∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合,
∴∠BAE=∠DAG,
∵∠BAD=90°,∠EAF=45°,
∴∠BAE+∠DAF=45°,
∴∠EAF=∠FAG,
∵∠ADC+∠B=180°,
∴∠FDG=180°,点F、D、G共线,
在△AFE和△AFG中,

∴△AFE≌△AFG(SAS),
∴EF=FG,
即:EF=BE+DF;

(1)把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合,再证明△AFG≌△AFE进而得到EF=FG,即可得EF=BE+DF;(2)∠B+∠D=180°时,EF=BE+DF,与(1)的证法类同;(3)根据△AEC绕点A顺时针旋转90°得到△ABE′,根据旋转的性质,可知△AEC≌△ABE′得到BE′=EC,AE′=AE,∠C=∠ABE′,∠EAC=∠E′AB,根据Rt△ABC中的,AB=AC得到∠E′BD=90°,所以E′B2+BD2=E′D2 , 证△AE′D≌△AED,利用DE=DE′得到DE2=BD2+EC2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,C为∠AOB的边OA上一点,OC=6,N为边OB上异于点O的一动点,P是线段CN上一点,过点P分别作PQ∥OA交OB于点Q,PM∥OB交OA于点M.

(1)若∠AOB=60°,OM=4,OQ=1,求证:CN⊥OB
(2)当点N在边OB上运动时,四边形OMPQ始终保持为菱形.
①问:的值是否发生变化?如果变化,求出其取值范围;如果不变,请说明理由.
②设菱形OMPQ的面积为S1 , △NOC的面积为S2 , 求的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=﹣x2﹣2x+3 的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C

(1)求A、B、C的坐标;
(2)过抛物线上一点F作y轴的平行线,与直线AC交于点G.若FG= AC,求点F的坐标;
(3)E(0,﹣2),连接BE.将△OBE绕平面内的某点逆时针旋转90°得到△O′B′E′,O、B、E的对应点分别为O′、B′、E′.若点B′、E′两点恰好落在抛物线上,求点B′的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在建立平面直角坐标系的方格纸中,每个小方格都是边长为1的小正方形,△ABC的顶点均在格点上,点P的坐标为(﹣1,0),请按要求画图与作答:

(1)把△ABC绕点P旋转180°得△A′B′C.
(2)把△ABC向右平移7个单位得△A″B″C″.
(3)△A′B′C与△A″B″C″是否成中心对称,若是,找出对称中心P′,并写出其坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在建立平面直角坐标系的方格纸中,每个小方格都是边长为1的小正方形,△ABC的顶点均在格点上,点P的坐标为(﹣1,0),请按要求画图与作答:

(1)把△ABC绕点P旋转180°得△A′B′C.
(2)把△ABC向右平移7个单位得△A″B″C″.
(3)△A′B′C与△A″B″C″是否成中心对称,若是,找出对称中心P′,并写出其坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列关系中,两个量之间为反比例函数关系的是(  )
A.正方形的面积S与边长a的关系
B.正方形的周长l与边长a的关系
C.矩形的长为a , 宽为20,其面积Sa的关系
D.矩形的面积为40,长a与宽b之间的关系

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,一次函数y=ax+b的图象与反比例函数y= 的图象相交于点A(﹣4,﹣2),B(m,4),与y轴相交于点C.
(1)求此反比例函数和一次函数的表达式;
(2)求点C的坐标及△AOB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,EB为半圆O的直径,点A在EB的延长线上,AD切半圆O于点D,BC⊥AD于点C,AB=2,半圆O的半径为2,则BC的长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在开展“经典阅读”活动中,某学校为了解全校学生利用课外时间阅读的情况,学校团委随机抽取若干名学生,调查他们一周的课外阅读时间,并根据调查结果绘制了如下尚不完整的统计表.根据图表信息,解答下列问题: 频率分布表

阅读时间
(小时)

频数
(人)

频率

1≤x<2

18

0.12

2≤x<3

a

m

3≤x<4

45

0.3

4≤x<5

36

n

5≤x<6

21

0.14

合计

b

1


(1)填空:a= , b= , m= , n=
(2)将频数分布直方图补充完整(画图后请标注相应的频数);
(3)若该校由3000名学生,请根据上述调查结果,估算该校学生一周的课外阅读时间不足三小时的人数.

查看答案和解析>>

同步练习册答案