【题目】如图,已知△ABC,以AC为直径的⊙O交AB于点D,点E为弧AD的中点,连接CE交AB于点F,且BF=BC.
(1)求证:BC是⊙O的切线;
(2)若⊙O的半径为2,=,求CE的长.
【答案】(1)证明见详解;(2).
【解析】
(1)连接AE,求出∠EAD+∠AFE=90°,推出∠BCE=∠BFC,∠EAD=∠ACE,求出∠BCE+∠ACE=90°,根据切线的判定推出即可.
(2)根据AC=4,=,求出BC=3,AB=5,BF=3,AF=2,根据∠EAD=∠ACE,∠E=∠E证△AEF∽△CEA,推出EC=2EA,设EA=x,EC=2x,由勾股定理得出,求出即可.
(1)答:BC与⊙O相切.
证明:连接AE,
∵AC是⊙O的直径
∴∠E=90°,
∴∠EAD+∠AFE=90°,
∵BF=BC,
∴∠BCE=∠BFC=∠AFE,
∵E为弧AD中点,
∴∠EAD=∠ACE,
∴∠BCE+∠ACE=∠EAD+∠AFE=90°,
∴AC⊥BC,
∵AC为直径,
∴BC是⊙O的切线.
(2)解:∵⊙O的半为2,
∴AC=4,
∵=
∴BC=3,AB=5,
∴BF=3,AF=5-3=2,
∵∠EAD=∠ACE,∠E=∠E,
∴△AEF∽△CEA,
∴
∴EC=2EA,
设EA=x,则有EC=2x,
由勾股定理得:,
∴ (负数舍去),
即.
科目:初中数学 来源: 题型:
【题目】2019年北疆承办了世界园艺博览会,某商店为了抓住博览会的商机,决定购买A.B两种世园会纪念品,若购进A中纪念品20件,B种纪念品10件,需要2000元;若购进A中纪念品8件,B种纪念品6件,需要1100元.
(1)求购进A.B两种纪念品每件各需要多少元?
(2)若该商店决定拿出10000元全部用来购进这两种纪念品,考虑到市场需求,要求购进A种纪念品的数量不少于B种的6倍,且少于B种纪念品数量的8倍,设购进B种纪念品a件,则该商店共有几种进货方案?
(3)在第(2)问的条件下,若销售每件A种纪念品可获利润30元,每件B种纪念品可获利润40元,设总利润为y元,请写出总利润y(元)与a(个)的函数关系式,并根据函数关系式说明总利润最高时的进货方案.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】往水平放置的圆柱形油槽内装入一些油后,截面如图所示.若油面宽AB和油的最大深度都为80cm.
(1)求油槽的半径OA;
(2)从油槽中放出一部分油,当剩下的油面宽度为60cm时,求油面下降的高度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为纪念建国70周年,某校举行班级歌咏比赛,歌曲有:《我爱你,中国》,《歌唱祖国》,《我和我的祖国》(分别用字母A,B,C依次表示这三首歌曲).比赛时,将A,B,C这三个字母分别写在3张无差别不透明的卡片正面上,洗匀后正面向下放在桌面上,八(1)班班长先从中随机抽取一张卡片,放回后洗匀,再由八(2)班班长从中随机抽取一张卡片,进行歌咏比赛.
(1)八(1)班抽中歌曲《我和我的祖国》的概率是__________;
(2)试用画树状图或列表的方法表示所有可能的结果,并求出八(1)班和八(2)班抽中不同歌曲的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点在抛物线上,且抛物线与轴分别交于点和点,与轴交于点
(1)求抛物线的解析式.
(2)若点为抛物线对称轴上的一个动点,求的最小值.
(3)点为抛物线上除点外的一点,若与的面积相等,求点的坐标。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】AB是⊙O的直径,C点在⊙O上,F是AC的中点,OF的延长线交⊙O于点D,点E在AB的延长线上,∠A=∠BCE.
(1)求证:CE是⊙O的切线;
(2)若BC=BE,判定四边形OBCD的形状,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx﹣1(a≠0)经过A(﹣1,0),B(2,0)两点,与y轴交于点C.
(1)求抛物线的解析式及顶点D的坐标;
(2)点P在抛物线的对称轴上,当△ACP的周长最小时,求出点P的坐标;
(3)若点M为抛物线第四象限内一点,连接BC、CM、BM,求当△BCM的面积最大时点M的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知点A、B(AB<2),现没有直尺,只有一把生锈的圆规,仅能做出半径为1的圆,能否在平面内找到一点F,使得△ABF是等边三角形?
小天经过探究完成了以下的作图步骤:
第一步:分别以点A、B为圆心,1为半径作圆,两圆交于点C;
第二步:以C为圆心,1为半径作圆交第一步中的两圆于点D、E;
第三步:分别以D、E为圆心,1为半径作圆,两圆交于点C、F,
(1)请将图补充完整,并作出△ABF.
(2)以下说法中,
①点C在线段AB的垂直平分线上;
②△CAD和△CBE都是等边三角形;
③点C在线段AF的垂直平分线上;
④△ABF是等边三角形,
正确的有 .(填上所有正确的序号)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com