精英家教网 > 初中数学 > 题目详情

【题目】如图,点在抛物线上,且抛物线与轴分别交于点和点,与轴交于点

1)求抛物线的解析式.

2)若点为抛物线对称轴上的一个动点,求的最小值.

3)点为抛物线上除点外的一点,若的面积相等,求点的坐标。

【答案】(1) ;(2);(3) .

【解析】

1)将点的坐标代入求解即可.

2)找对称点,利用两点之间线段最短求解即可.

3)将几何问题转化为函数问题求解即可.

解(1)将点代入

解得

(2)如图1,作点关于对称轴的对称点,连接

的最小值为

,∴最小值为

(3)由(1)可求出

∴直线的解析式为

的面积相等

如图所示:①过交抛物线于点

∴直线的解析式为

联合

②过点,交抛物线于点

直线的解析式为

联合

解得

综上所述,满足条件的有三个,分别为:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠C=90°,以AC为直径作⊙O,交ABD,过点OOEAB,交BCE.

(1)求证:ED为⊙O的切线;

(2)如果⊙O的半径为,ED=2,延长EO交⊙OF,连接DF、AF,求ADF的面积.

【答案】(1)证明见解析;(2)

【解析】试题分析:(1)首先连接OD,由OEAB,根据平行线与等腰三角形的性质,易证得 即可得,则可证得的切线;
(2)连接CD,根据直径所对的圆周角是直角,即可得 利用勾股定理即可求得的长,又由OEAB,证得根据相似三角形的对应边成比例,即可求得的长,然后利用三角函数的知识,求得的长,然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

试题解析:(1)证明:连接OD

OEAB

∴∠COE=CADEOD=ODA

OA=OD,

∴∠OAD=ODA

∴∠COE=DOE

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD

ED的切线;

(2)连接CD,交OEM

RtODE中,

OD=32,DE=2,

OEAB

∴△COE∽△CAB

AB=5,

AC是直径,

EFAB

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面积为

型】解答
束】
25

【题目】【题目】已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.

(1)求ba的关系式和抛物线的顶点D坐标(用a的代数式表示);

(2)直线与抛物线的另外一个交点记为N,求DMN的面积与a的关系式;

(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知一个口袋中装有六个完全相同的小球,小球上分别标有1257813六个数,搅匀后一次从中摸出一个小球,将小球上的数记为m,则使得一次函数y=(﹣m+1x+11m经过一、二、四象限且关于x的分式方程3x+的解为整数的概率是(  )

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】关于x的一元二次方程x2+2k+1x+k2+1=0有两个不等实根x1x2

1)求实数k的取值范围

2)若方程两实根x1x2满足x1+x2=﹣x1x2k的值

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABC,以AC为直径的⊙OAB于点D,点E为弧AD的中点,连接CEAB于点F,且BF=BC

1)求证:BC是⊙O的切线;

2)若⊙O的半径为2=,求CE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,∠B42°,把ABC绕着点A顺时针旋转,得到AB'C',点C的对应点C'落在BC边上,且B'ABC,则∠BAC'的度数为(  )

A.24°B.25°C.26°D.27°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD是正方形,EAD边上的一个动点(有与AD重合),以E为圆心,EA为半径的⊙ECEG点,CF与⊙E切于F点.AD4AExCF2y

1)求yx的函数关系式,并写出x的取值范围;

2)是否存在x的值,使得FG把△CEF的面积分成12两部分?若存在,求出x的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知在半径为3的⊙O中,弦AB=3,弦AC=3,则∠BAC的度数为________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对于给定的图形G和点P,若点P可通过一次向上或向右平移nn0)个单位至图形G上某点P′,则称点P为图形G的“可达点”,特别地,当点P在图形G上时,点P为图形G的“可达点”.

1)如图1,在平面直角坐标系xOy中,点A11),B21),

在点OAB中,不是直线y=﹣x+2的“可达点”的是   

若点A是直线l的“可达点”且点A不在直线l上,写出一条满足要求的直线l的表达式:   

若点AB中有且仅有一点是直线ykx+2的“可达点”,则k的取值范围是   

2)如图2,在平面直角坐标系xOy中,O的半径为1,直线ly=﹣x+b

b=﹣2时,若直线m上一点NxNyN)满足NO的“可达点”,直接写出xN的取值范围   

若直线m上所有的O的“可达点”构成一条长度不为0的线段,直接写出b的取值范围   

查看答案和解析>>

同步练习册答案