【题目】如图,在△ABC中,点D是BC边上的一点,∠B=44°,∠BAD=28°,将△ABD沿AD折叠得到△AED,AE与BC交于点F.
(1)填空:∠AFC= 度;
(2)求∠EDF的度数.
【答案】(1)100;(2)∠EDF=36°.
【解析】
(1)由折叠可得∠BAD=∠DAE=28°,即∠BAE=56°,根据三角形的外角等于不相邻的两个内角和,可求∠AFC的度数;
(2)根据三角形内角和定理可求∠ADB=108°,即可求∠ADF的度数,由折叠可求∠ADE=∠ADB=108°,即可求∠EDF的度数.
(1)∵折叠,∴∠BAD=∠DAE=28°,∴∠BAE=56°.
∵∠AFC=∠ABC+∠BAE,∴∠AFC=44°+56°=100°.
故答案为:100度.
(2)由折叠的性质可得:∠ADB=∠ADE.
∵∠ADF是△ABD的外角,∴∠ADF=∠B+∠BAD.
∵∠B=44°,∠BAD=28°.
又∵∠B+∠BAD+∠ADB=180°,∴∠ADF=44°+28°=72°,∠ADB=∠ADE=180°﹣44°﹣28°=108°.
∵∠ADE=∠EDF+∠ADF,∴∠EDF=∠ADE﹣∠ADF=108°﹣72°=36°.
科目:初中数学 来源: 题型:
【题目】如图,Rt△ABC中,∠C=90°,AB=5,AC=3,D点从BC的中点到C点运动,点E在AD上,以E为圆心的⊙E分别与AB、BC相切,则⊙E的半径R的取值范围为( )
A.≤R≤
B.≤R≤
C.≤R≤2
D.1≤R≤
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】任何一个正整数n都可以进行这样的分解:n=s×t(s,t是正整数,且s≤t),如果p×q在n的所有这种分解中两因数之差的绝对值最小,我们就称p×q是n的最佳分解,并规定:、例如18可以分解成1×18,2×9,3×6这三种,这时就有.给出下列关于F(n)的说法:(1);(2);(3)F(27)=3;(4)若n是一个整数的平方,则F(n)=1.其中正确说法的有_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点D,E分别在AB,AC上,DE∥BC,EF平分∠DEC,交BC于点F,且∠ABC=55°,∠C=70°.
(1)求∠DEF的度数;
(2)请判断EF与AB的位置关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ACB=90°,∠ABC=30°,△CDE是等边三角形,点D在边AB上.
(1)如图1,当点E在边BC上时,求证DE=EB;
(2)如图2,当点E在△ABC内部时,猜想ED和EB数量关系,并加以证明;
(3)如图3,当点E在△ABC外部时,EH⊥AB于点H,过点E作GE∥AB,交线段AC的延长线于点G,AG=5CG,BH=3.求CG的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们用表示不大于的最大整数,例如:,,;用表示大于的最小整数,例如:,,.解决下列问题:
(1)= ,,= ;
(2)若=2,则的取值范围是 ;若=-1,则的取值范围是 ;
(3)已知,满足方程组,求,的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)问题背景:已知,如图1,等腰△ABC中,AB=AC,∠BAC=120°,AD⊥BC于点D,AB=a,△ABC的面积为S,则有BC=a,S=a2.
(2)迁移应用:如图2,△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三点在同一条直线上,连接BD.
①求证:△ADB≌△AEC;
②求∠ADB的度数.
③若AD=2,BD=4,求△ABC的面积.
(3)拓展延伸:如图3,在等腰△ABC中,∠BAC=120°,在∠BAC内作射线AM,点D与点B关于射线AM轴对称,连接CD并延长交AM于点E,AF⊥CD于F,连接AD,BE.
①求∠EAF的度数;
②若CD=5,BD=2,求BC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=﹣x+2的图象与反比例函数y=﹣ 的图象交于A、B两点,与x轴交于D点,且C、D两点关于y轴对称.
(1)求A、B两点的坐标;
(2)求△ABC的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com