【题目】如图,在△ABC中,AC=BC,AB⊥x轴,垂足为A.反比例函数y= (x>0)的图象经过点C,交AB于点D.已知AB=4,BC=.
(1)若OA=4,求k的值;
(2)连接OC,若BD=BC,求OC的长.
【答案】(1)k=5(2)
【解析】试题分析:本题主要考查反比例函数图象和性质,(1)根据等腰三角形的性质求出点C的纵坐标,再由OA=4得出点C的坐标代入解析式即可求解,(2)先设出A点坐标,再根据BC=BD表示出点D的坐标,由勾股定理可知CE=从而表示出C点坐标,把点C和点D坐标代入解析式求出m的值,根据点C的坐标求OC.
(1)如图,作CE⊥AB,垂足为E.作CF⊥x轴,垂足为F.∵AC=BC,AB=4,∴AE=BE=2.在Rt△BCE中,BC=,BE=2,由勾股定理得CE=.∵OA=4,∴OF=OA-CE=,∴C点的坐标为.∵点C在y=的图象上,∴k=5.
(2)设A点的坐标为(m,0).∵BD=BC=,∴AD=,∴D,C两点的坐标分别为,.∵点C,D都在y=的图象上,∴m=2,解得m=6,∴C点的坐标为,∴OF=,CF=2.在Rt△OFC中,OC2=OF2+CF2,∴OC=.
科目:初中数学 来源: 题型:
【题目】如图,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm.动点M从点B出发,在BA边上以每秒3cm的速度向定点A运动,同时动点N从点C出发,在CB边上以每秒2cm的速度向点B运动,运动时间为t秒(0<t<),连接MN.
(1)若△BMN与△ABC相似,求t的值;
(2)连接AN,CM,若AN⊥CM,求t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,对于平面内任一点(m,n), 规定以下两种变换:
⑴f(m,n)=(m,﹣n),如f(2,1)=(2,﹣1);
⑵g(m,n)=(﹣m,﹣n),如g(2,1)=(﹣2,﹣1).
按照以上变换有:f[g(3,4)]=f(﹣3,﹣4)=(﹣3,4),那么g[f(2,﹣3)]= .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知线段a、b、c满足a:b:c=3:2:6,且a+2b+c=26.
(1)求a、b、c的值;
(2)若线段x是线段a、b的比例中项,求x的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com