精英家教网 > 初中数学 > 题目详情
16.如图,一位篮球运动员在距离篮圈中心水平距离4m处跳起投篮,球沿一条抛物线运动,当球运动的水平距离为2.5m时,达到最大高度3.5m,然后准确落人篮框内,已知篮圈中心距离地面高度为3.05m,试解答下列问题:
(1)建立图中所示的平面直角坐标系,求抛物线所对应的函数表达式.
(2)这次跳投时,球出手处离地面多高?

分析 (1)设抛物线的表达式为y=ax2+3.5,依题意可知图象经过的坐标,由此可得a的值;
(2)设这次跳投时,球出手处离地面hm,因为(1)中求得y=-0.2x2+3.5,当x=-2,5时,即可求得结论.

解答 解:(1)∵抛物线的顶点坐标为(0,3.5),
∴可设抛物线的函数关系式为y=ax2+3.5.
∵篮圈中心(1.5,3.05)在抛物线上,将它的坐标代入上式,得  3.05=a×1.52+3.5,
∴a=-$\frac{1}{5}$,
∴y=-$\frac{1}{5}$x2+3.5.
(2)设这次跳投时,球出手处离地面hm,
因为(1)中求得y=-0.2x2+3.5,
∴当x=-2.5时,
h=-0.2×(-2.5)2+3.5=2.25m.
∴这次跳投时,球出手处离地面2.25m.

点评 本题考查了二次函数的应用,解题的关键是从实际问题中抽象出二次函数模型,体现了数学建模的数学思想,难度不大,能够结合题意利用二次函数不同的表达形式求得解析式是解答本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

9.下列函数(1)y=x;(2)y=2x-1;(3)y=$\frac{1}{x}$;(4)x+y=1中,是一次函数的有(  )
A.4个B.3个C.2个D.1个

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.一种产品的进价为40元,某公司在销售这种产品时,每年总开支为100万元(不含进价).经过若干年销售得知,年销售量y(万件)是销售单价x(元)的一次函数:y=-$\frac{1}{20}$x+8.
(1)写出该公司销售这种产品的年利润w(万元)关于销售单价x(元)的函数关系式;当销售单价x为何值时,年利润最大?
(2)试通过(1)中的函数关系式及其大致图象帮助该公司确定产品的销售单价范围,使年利润不低于60万元.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.许多桥梁都采用抛物线型设计.小明将他家乡的彩虹桥按比例缩小后,绘成如图示意图,图中的三条抛物线分别表示桥上的三条钢梁,x轴表示桥面,y轴经过中间抛物线的最高点.左右两条抛物线关于y轴对称,M、N分别是其顶点.经过测算,中间抛物线的解析式为:y=-$\frac{1}{36}$x2+16,并且BD=$\frac{1}{2}$CD.
(1)求钢梁最高点离桥面的高度OE的长;
(2)求桥上三条钢粱的总跨度AB的长;
(3)若拉杆DE∥拉杆BN,求右侧抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.某公司拟用运营指数y来量化考核司机的工作业绩,运营指数(y)与运输次数(n)和平均速度(x)之间满足关系式为y=ax2+bnx+100,当n=1,x=30时,y=190;当n=2,x=40时,y=420.
(1)用含x和n的式子表示y;
(2)当运输次数定为3次,求获得最大运营指数时的平均速度;
(3)若n=2,x=40,能否在n增加m%(m>0),同时x减少m%的情况下,而y的值保持不变?若能,求出m的值;若不能,请说明理由.
参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标是(-$\frac{b}{2a}$,$\frac{{4ac-{b^2}}}{4a}$)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.已知抛物线C1:y=x2-4x+3与x轴交于A,B两点,与y轴交于C点,平移直线BC,至PQ,点P在对称轴上,点Q在第一象限的抛物线上,且CP=QB,求Q点的坐标.

查看答案和解析>>

科目:初中数学 来源:2016-2017学年广东省东莞市堂星晨学校七年级3月月考数学试卷(解析版) 题型:单选题

下列各式中,计算结果为的是( )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源:2016-2017学年浙江省瑞安市五校联考八年级下学期第一次月考数学试卷(解析版) 题型:填空题

写出一个二次项系数为1,且一个根是3的一元二次方程__________.

查看答案和解析>>

科目:初中数学 来源:2017届江苏省盐都市九年级下学期第一次学情调研数学试卷(解析版) 题型:单选题

使式子有意义的x取值范围是( )

A. x>-1 B. x≥-1 C. x<-1 D. x≤-1

查看答案和解析>>

同步练习册答案