【题目】已知关于x的方程x2﹣(m+2)x+2m﹣1=0.
(1)求证:此方程有两个不相等的实数根;
(2)若抛物线y=x2﹣(m+2)x+2m﹣1=0与x轴有两个交点都在x轴正半轴上,求m的取值范围;
(3)填空:若x2﹣(m+2)x+2m﹣1=0的两根都大于1,则m的取值范围是_____.
【答案】(1)见解析;(2) m>;(3) m>2.
【解析】试题分析: (1)表示出根的判别式,配方后得到根的判别式大于0,进而确定出方程总有两个不相等的实数根;
(2)设抛物线y=x2﹣(m+2)x+2m﹣1=0与x轴两个交点的横坐标是x1,x2,根据两个交点都在x轴正半轴上得出x1+x2>0,x1x2>0,利用根与系数的关系列出不等式组,求解即可;
(3)设x2﹣(m+2)x+2m﹣1=0的两根是x1,x2,根据两根都大于1得出x1+x2>2,(x1﹣1)(x2﹣1)>0,根据根与系数的关系列出不等式组,求解即可.
试题解析:
(1)证明:∵△=[﹣(m+2)]2﹣4(2m﹣1)=m2+4m+4﹣8m+4=m2﹣4m+8=(m﹣2)2+4,
∵(m﹣2)2≥0,
∴(m﹣2)2+4>0,
∴无论m取何实数时,此方程都有两个不相等的实数根;
(2)解:设抛物线y=x2﹣(m+2)x+2m﹣1=0与x轴两个交点的横坐标是x1,x2,
则x1+x2=m+2,x1x2=2m﹣1.
根据题意,得,
解得m>.
即m的取值范围是m> ;
(3)解:设x2﹣(m+2)x+2m﹣1=0的两根是x1,x2,
则x1+x2=m+2,x1x2=2m﹣1.
根据题意,得,
解得m>2.
故答案为m>2.
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=﹣(x﹣1)2+c与x轴交于A,B(A,B分别在y轴的左右两侧)两点,与y轴的正半轴交于点C,顶点为D,已知A(﹣1,0).
(1)求点B,C的坐标;
(2)判断△CDB的形状并说明理由;
(3)将△COB沿x轴向右平移t个单位长度(0<t<3)得到△QPE.△QPE与△CDB重叠部分(如图中阴影部分)面积为S,求S与t的函数关系式,并写出自变量t的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,∠C=90°,∠A=30°.
(1)用尺规作图作AB边上的垂直平分线DE,交AC于点D,交AB于点E.(保留作图痕迹,不要求写作法和证明)
(2)连接BD,求证:DE=CD.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若顺次连接四边形ABCD各边中点所得四边形是矩形,则四边形ABCD必然是( )
A.菱形
B.对角线相互垂直的四边形
C.正方形
D.对角线相等的四边形
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求,商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.
(1)该商家购进的第一批衬衫是多少件?
(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润不低于25%(不考虑其他因素),那么每件衬衫的标价至少是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形AOBC,点A、B分别在x、y轴上,对角线AB、OC交于点D,点C( ,1),点M是射线OC上一动点.
(1)求证:△ACD是等边三角形;
(2)若△OAM是等腰三角形,求点M的坐标;
(3)若N是OA上的动点,则MA+MN是否存在最小值?若存在,请求出这个最小值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下面材料,并解答问题.
材料:将分式拆分成一个整式与一个分式(分子为整数)的和的形式.
解:由分母为﹣x2+1,可设﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b则﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b=﹣x4﹣ax2+x2+a+b=﹣x4﹣(a﹣1)x2+(a+b)
∵对应任意x,上述等式均成立,∴,∴a=2,b=1
∴==+=x2+2+这样,分式被拆分成了一个整式x2+2与一个分式的和.
解答:
(1)将分式 拆分成一个整式与一个分式(分子为整数)的和的形式.
(2)试说明的最小值为8.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com