精英家教网 > 初中数学 > 题目详情

【题目】若顺次连接四边形ABCD各边中点所得四边形是矩形,则四边形ABCD必然是( )
A.菱形
B.对角线相互垂直的四边形
C.正方形
D.对角线相等的四边形

【答案】B
【解析】解:已知:如图,四边形EFGH是矩形,且E、F、G、H分别是AB、BC、CD、AD的中点,

求证:四边形ABCD是对角线垂直的四边形.

证明:由于E、F、G、H分别是AB、BC、CD、AD的中点,

根据三角形中位线定理得:EH∥FG∥BD,EF∥AC∥HG;

∵四边形EFGH是矩形,即EF⊥FG,

∴AC⊥BD;故答案为:B.

题目中并没有给出图,画图证明进行对题意的分析。
如图所示,四边形EFGH是矩形,矩形的性质1矩形的四个角都是直角,所以EF⊥FG,再根据中位线的定义和定理:连接三角形两边中点的线段叫做三角形的中位线(定义),三角形的中位线平行第三边(性质),得结论EF∥AC∥HG,结合EF⊥FG,根据两直线平行,第三条直线垂直于其中一条平行线,那么第三条直线垂直于这两条平行线,所以AC⊥FG,同理EH∥FG∥BD,所以AC⊥BD。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】下列图形中,不具有稳定性的图形是( )

A. 平行四边形 B. 等腰三角形 C. 直角三角形 D. 等边三角形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某学校为了丰富学生课余生活,决定开设以下体育课外活动项目:A.版画  B.保龄球C.航模  D.园艺种植,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:

(1)这次被调查的学生共有   人;

(2)请你将条形统计图(2)补充完整;

(3)在平时的保龄球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加保龄球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图, 是等边三角形内一点,将线段绕点顺时针旋转60°得到线段,连接.若,则四边形的面积为____.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线l:y=x﹣ 与x轴正半轴、y轴负半轴分别相交于A、C两点,抛物线y=x2+bx+c经过点B(﹣1,0)和点C.

(1)填空:直接写出抛物线的解析式:_____

(2)已知点Q是抛物线y=x2+bx+c在第四象限内的一个动点.

①如图,连接AQ、CQ,设点Q的横坐标为t,△AQC的面积为S,求S与t的函数关系式,并求出S的最大值;

②连接BQ交AC于点D,连接BC,以BD为直径作⊙I,分别交BC、AB于点E、F,连接EF,求线段EF的最小值,并直接写出此时Q点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列运算正确的是(
A.a2a3=a6
B.a8÷a4=a2
C.a3+a3=2a6
D.(a32=a6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的方程x2﹣(m+2)x+2m﹣1=0.

(1)求证:此方程有两个不相等的实数根;

(2)若抛物线y=x2﹣(m+2)x+2m﹣1=0与x轴有两个交点都在x轴正半轴上,求m的取值范围;

(3)填空:若x2﹣(m+2)x+2m﹣1=0的两根都大于1,则m的取值范围是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,对角线ACBD相交于点O,点EF分别是AOAD的中点,若AB6 cmBC8 cm,则AEF的周长为________cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,ABCD中,AD=3cm,CD=1cm,∠B=45°,点P从点A出发,沿AD方向匀速运动,速度为3cm/s;点Q从点C出发,沿CD方向匀速运动,速度为1cm/s,连接并延长QP交BA的延长线于点M,过M作MN⊥BC,垂足是N,设运动时间为t(s)(0<t<1).

(1)当t为何值时,四边形AQDM是平行四边形?

(2)证明:在P、Q运动的过程中,总有CQ=AM;

(3)是否存在某一时刻t,使四边形ANPM的面积是平行四边形ABCD的面积的一半?若存在,求出相应的t值;若不存在,说明理由.

查看答案和解析>>

同步练习册答案