精英家教网 > 初中数学 > 题目详情

【题目】如图的等边三角形ABC是学校的一块空地,为美化校园,决定把这块空地分为全等的三部分,分别种植不同的花草.现有两种划分方案:(1)分为三个全等的三角形;(2)分为三个全等的四边形.你认为这两种方案能实现吗?若能,画图说明你的划分方法.

【答案】(1)见解析;(2)见解析.

【解析】

(1)三角形的中线把三角形的面积分成相等的两个三角形, 画△ABC的两条中线,即可找出;

(2)还是画△ABC的两条中线,能够找出三个全等的四边形.

解:能.划分方法如下:

(1)画△ABC的中线AD,BE,两条中线相交于O点,连接OC,则△ABO,BCO,ACO为三个全等的三角形,如图①所示.

(2)画△ABC的中线AD,BE,两条中线相交于O点,连接CO并延长交AB于点F,则四边形AEOF,四边形BDOF,四边形CDOE为三个全等的四边形,如图②所示.(答案不唯一)

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,将含30°角的直角三角尺ABC绕点B顺时针旋转150°后得到△EBD,连接CD.若AB=4cm.则△BCD的面积为(  )

A. 4 B. 2 C. 3 D. 2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】给定一列数,我们把这列数中的第一个数记为a1,第二个数记为a2,第三个数记为a3,依此类推,第n个数记为an(n为正整数),如下面这列数2,4,6,8,10中,a1=2,a2=4,a3=6,a4=8,a5=10.规定运算sum(a1:an)=a1+a2+a3+…+an.即从这列数的第一个数开始依次加到第n个数,如在上面的一列数中,sum(a1:a3)=2+4+6=12.

(1)已知一列数1,﹣2,3,﹣4,5,﹣6,7,﹣8,9,﹣10,求a3,sum(a1:a10的值

(2)已知这列数1,﹣2,3,﹣4,5,﹣6,7,﹣8,9,﹣10,…,按照规律可以无限写下去,求a2018,sum(a1:a2018的值

(3)在(2)的条件下否存在正整数n使等式|sum(a1:an)|=50成立?如果有,写出n的值,如果没有,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某兴趣小组10名学生在一次数学测试中的成绩如表(满分150分)

分数(单位:分)

105

130

140

150

人数(单位:人)

2

4

3

1

下列说法中,不正确的是(
A.这组数据的众数是130
B.这组数据的中位数是130
C.这组数据的平均数是130
D.这组数据的方差是112.5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将长方形ABCD对折,得折痕PQ,展开后再沿MN翻折,使点C恰好落在折痕PQ上的点C′处,点D落在D′处,其中MBC的中点且MN与折痕PQ交于F.连接AC′,BC′,则图中共有等腰三角形的个数是(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某学校开展课外体育活动,决定开设A:篮球,B:乒乓球,C、踢毽子,D、跳绳四种活动项目,为了解学生最喜欢哪一种活动项目(每人只选取一种),随机抽取了部分学生进行调查,并将调查结果绘成如图统计图,请你结合图中信息解答下列问题.
(1)样本中最喜欢A项目的人数所占百分比为 , 其所在扇形统计图中对应的圆心角度数是度;
(2)请把条形统计图补充完整;
(3)若该校有学生2000人,请根据样本估计全校最喜欢跳绳的学生人数约是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线C1:y=x2+bx+c经过原点,与x轴的另一个交点为(2,0),将抛物线C1向右平移m(m>0)个单位得到抛物线C2 , C2交x轴于A,B两点(点A在点B的左边),交y轴于点C.

(1)求抛物线C1的解析式及顶点坐标;
(2)以AC为斜边向上作等腰直角三角形ACD,当点D落在抛物线C2的对称轴上时,求抛物线C2的解析式;
(3)若抛物线C2的对称轴存在点P,使△PAC为等边三角形,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将一根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度hcm,则h的取值范围是(
A.h≤17cm
B.h≥8cm
C.15cm≤h≤16cm
D.7cm≤h≤16cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线轴、轴分别交于点.点的坐标为(,0),点 的坐标为(,0).

(1)求的值;

(2)若点)是第二象限内的直线上的一个动点.当点运动过程中,试写出的面积的函数关系式,并写出自变量的取值范围;

(3)探究:当运动到什么位置时,的面积为,并说明理由.

查看答案和解析>>

同步练习册答案