【题目】如图,在平面直角坐标系中,点为坐标原点,直线与轴、轴分别交于点、,点在轴负半轴上,且.
(1)求的值;
(2)把沿轴翻折,使点落在轴的点处,点为线段上一点,连接交轴于点,设点横坐标为,的面积为,求与、的函数解析式(用含、的代数式表示);
(3)在(2)的条件下,若,点的纵坐标为,求直线的解析式.
【答案】(1);(2);(3).
【解析】
(1)分别求出直线与x轴交点A,与y轴交点B的坐标,然后表示出OA,OC的长,从而求解;
(2)过点作轴于,过点作于,由(1)可得∠ACB=60°,则∠OAC=30°,然后利用解直角三角形分别表示出PC,DN的长,从而求三角形面积,使问题得解;
(3)连接,延长至,使得,过点作∥y轴交于,通过对,的判定得到,,,,,然后利用平行线分线段成比例定理求得m的值,从而确定点D和点E的坐标,然后利用待定系数法求函数解析式.
解:(1)在中,当y=0时,x=;当x=0时,y=6m
∴点坐标,点坐标
∴,,
在中,
(2)过点作轴于,过点作于.
∵点横坐标为
∴,
由,则∠ACB=60°
∴∠OAC=30°
∵PH∥OA
∴
∴,
∴,解得:
在中,
∴
∴
(3)连接,延长至,使得,过点作∥y轴交于.
由折叠性质可知:∠ACB=∠DCB=60°,
∴∠QCD=60°
又因为CB=CQ,CD=CD
∴
∴,
∵
∴
∴
∴
∴
∴为等边三角形
∵∥y轴
∴∠BCD=∠DCQ=∠CDK=60°
∴为等边三角形
∴
∴
∴
∴
∵点纵坐标为
∴,
∵CE∥DK
∴,即
解得:
∴直线AB的解析式为
当y=0时,,解得
则A坐标为
∴由折叠性质可知,坐标为,点坐标为
设解析式为,则,解得
∴直线解析式为.
科目:初中数学 来源: 题型:
【题目】解不等式组 请结合题意填空,完成本题的解答.
(Ⅰ)解不等式①,得_______________;
(Ⅱ)解不等式②,得_______________;
(Ⅲ)把不等式①和②的解集在数轴上表示出来;
(Ⅳ)原不等式组的解集为____________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且∠CBF=∠CAB.
(1)求证:直线BF是⊙O的切线;
(2)若AB=5,sin∠BAD=,求AD的长;
(3)试探究FB、FD、FA之间的关系,并证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,AD∥BC,BA=BC,BD平分∠ABC.
(1)求证:四边形ABCD是菱形;
(2)过点D作DE⊥BD,交BC的延长线于点E,若BC=5,BD=8,求四边形ABED的周长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】年我国个人所得税征收办法最新规定:月收入不超过元的部分不收税;月收入超过元但不超过元的部分征收的所得税;月收入超过元但不超过元的部分征收的所得税国家特别规定月收入指个人工资收入扣除专项附加费后的实际收入(专项附加费就是子女教育费用、住房贷款利息费用、租房的租金、赡养老人、大病医疗费用等费用).如某人月工资收入元,专项附加费支出元,他应缴纳个人所得税为:(元).
(1)当月收入超过元而又不超过元时,写出应缴纳个人所得税(元)与月收入(元)之间的关系式;
(2)如果某人当月专项附加费支出元,缴纳个人所得税元,那么此人本月工资是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在锐角三角形ABC中,AB=8,AC=5,BC=6,沿过点B的直线折叠这个三角形,使点C落在AB边上的点E处,折痕为BD,下列结论:①∠CBD=∠EBD,②DE⊥AB,③三角形ADE的周长是7,④,⑤.其中正确的个数有( )
A.2B.3C.4D.5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在每个小正方形的边长为1的网格中,点,,,均在格点上,点是在直线上的动点,连,点是点关于直线的对称点.
(1)在图①中,当(点在点的左侧)时,计算的值等于______.
(2)当取得最小值时,请在如图②所示的网格中,用无刻度的直尺画出点,并简要说明点的位置是如何找到的.(不要求证明)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将矩形纸片OABC放在平面直角坐标系中,0为坐标原点,点A在y轴上,点C在x轴上,点B的坐标是(8,6),点P是边AB上的一个动点,将△OAP沿OP折叠,使点A落在点Q处.
(1)如图①,当点Q恰好落在OB上时.求点p的坐标;
(2)如图②,当点P是AB中点时,直线OQ交BC于M点.
①求证:MB=MQ;②求点Q的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com