精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC中,ABAC,以AB为直径的O分别交ACBC于点DE,点FAC的延长线上,且∠CBFCAB

1)求证:直线BFO的切线;

2)若AB5sinBAD,求AD的长;

3)试探究FBFDFA之间的关系,并证明.

【答案】1)见解析;(2;(3,见解析.

【解析】

1)连接AE,利用直径所对的圆周角是直角,从而判定直角三角形,利用直角三角形两锐角相等得到直角,从而证明∠ABF=90°

2)运用三角函数解直角三角形,并用勾股定理求出AD.
3)利用已知条件证得ABF∽△BDF,就可以得出三条线段F之间的关系.

解:(1)证明:连结.

的直径

,

∴直线的切线.

2)连接,则为直角三角形.

由勾股定理可得;

3

证明:∵

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,直线lyx+bx轴交于点A(﹣20),与y轴交于点B.双曲线y与直线l交于PQ两点,其中点P的纵坐标大于点Q的纵坐标

1)求点B的坐标;

2)当点P的横坐标为2时,求k的值;

3)连接PO,记POB的面积为S.若,结合函数图象,直接写出k的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了推动全社会自觉尊法学法守法用法,促进全面依法治国,某区每年都举办普法知识竞赛,该区某单位甲、乙两个部门各有员工200人,要在这两个部门中挑选一个部门代表单位参加今年的竞赛,为了解这两个部门员工对法律知识的掌握情况,进行了抽样调查,从甲、乙两个部门各随机抽取20名员工,进行了法律知识测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理,描述和分析,下面给出了部分信息.

a.甲部门成绩的频数分布直方图如下(数据分成6组:40≤x5050≤x6060≤x7070≤x8080≤x9090≤x≤100

b.乙部门成绩如下:

40 52 70 70 71 73 77 78 80 81

82 82 82 82 83 83 83 86 91 94

c.甲、乙两部门成绩的平均数、方差、中位数如下:

平均数

方差

中位数

79.6

36.84

78.5

77

147.2

m

d.近五年该单位参赛员工进入复赛的出线成绩如下:

2014

2015

2016

2017

2018

出线成绩(百分制)

79

81

80

81

82

根据以上信息,回答下列问题:

1)写出表中m的值;

2)可以推断出选择   部门参赛更好,理由为   

3)预估(2)中部门今年参赛进入复赛的人数为   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某公司的午餐采用自助的形式,并倡导员工适度取餐,减少浪费该公司共有10个部门,且各部门的人数相同.为了解午餐的浪费情况,从这10个部门中随机抽取了两个部门,进行了连续四周(20个工作日)的调查,得到这两个部门每天午餐浪费饭菜的重量,以下简称每日餐余重量(单位:千克),并对这些数据进行了整理、描述和分析.下面给出了部分信息..部门每日餐余重量的频数分布直方图如下(数据分成6组:):

.部门每日餐余重量在这一组的是:6.1 6.6 7.0 7.0 7.0 7.8

.部门每日餐余重量如下:1.4 2.8 6.9 7.8 1.9 9.7 3.1 4.6 6.9 10.8 6.9 2.6 7.5 6.9 9.5 7.8 8.4 8.3 9.4 8.8

. 两个部门这20个工作日每日餐余重量的平均数、中位数、众数如下:

部门

平均数

中位数

众数

6.4

7.0

/p>

6.6

7.2

根据以上信息,回答下列问题:

1)写出表中的值;

2)在这两个部门中,适度取餐,减少浪费做得较好的部门是________(填),理由是____________

3)结合这两个部门每日餐余重量的数据,估计该公司(10个部门)一年(按240个工作日计算)的餐余总重量.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对于二次函数,有下列结论:①其图象与x轴一定相交;②若,函数在时,yx的增大而减小;③无论a取何值,抛物线的顶点始终在同一条直线上;④无论a取何值,函数图象都经过同一个点.其中所有正确的结论是___.(填写正确结论的序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】商社电器从厂家购进了两种型号的空气净化器,已知一台型空气净化器的进价比一台型空气净化器的进价多元,用元购进型空气净化器和用元购进型空气净化器的台数相同.

(1)求一台型空气净化器和一台型空气净化器的进价各为多少元?

(2)商社电器计划型净化器的进货量不少于台且是型净化器进货量的三倍,在总进货款不超过万元的前提下,试问有多少种进货方案?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知反比例函数y= 与一次函数y=x+b的图形在第一象限相交于点A1k+4).

1)试确定这两函数的表达式;

2)求出这两个函数图象的另一个交点B的坐标,并求AOB的面积;

3)根据图象直接写出反比例函数值大于一次函数值的x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点为坐标原点,直线轴、轴分别交于点,点轴负半轴上,且

1)求的值;

2)把沿轴翻折,使点落在轴的点处,点为线段上一点,连接轴于点,设点横坐标为的面积为,求的函数解析式(用含的代数式表示);

3)在(2)的条件下,若,点的纵坐标为,求直线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在正方形ABCD中,点E在边CD上,AQ⊥BE于点Q,DP⊥AQ于点P.

(1)求证:AP=BQ;

(2)在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ的长.

查看答案和解析>>

同步练习册答案