【题目】已知二次函数图象的顶点横坐标是2,与x轴交于A(x1,0)、
B(x2,0),x1﹤0﹤x2,与y轴交于点C,O为坐标原点,.
(1)求证:;
(2)求m、n的值;
(3)当p﹥0且二次函数图象与直线仅有一个交点时,求二次函数的最大值.
【答案】(1)证明:∵二次函数图象的顶点横坐标是2,
∴抛物线的对称轴为x=2,即,化简得:n+4m=0.
(2)解:∵二次函数与x轴交于A(x1,0)、B(x2,0),x1<0<x2,
∴OA=-x1,OB=x2;.
令x=0,得y=p,∴C(0,p),∴OC=|p|.
由三角函数定义得:.
∵tan∠CAO-tan∠CBO=1,即,化简得:.
将代入得:,化简得:.
由(1)知n+4m=0,
∴当n=1时,;当n=-1时,.
∴m、n的值为:,n=-1(此时抛物线开口向上)或,n=1(此时抛物线开口向下).
(3)解:由(2)知,当p>0时,n=1,,
∴抛物线解析式为:.
联立抛物线与直线y=x+3解析式得到:,
化简得:.
∵二次函数图象与直线y=x+3仅有一个交点,
∴一元二次方程*根的判别式等于0,即△=02+16(p-3)=0,解得p=3.
∴抛物线解析式为:.
当x=2时,二次函数有最大值,最大值为4.
∴当p>0且二次函数图象与直线y=x+3仅有一个交点时,二次函数的最大值为4.
【解析】
二次函数综合题,曲线上点的坐标与方程的关系,一元二次方程根的判别式和根与系数的关系,锐角三角函数定义,二次函数的性质.
(1)由题意可知抛物线的对称轴为x=2,利用对称轴公式,化简即得n+4m=0.
(2)利用三角函数定义和抛物线与x轴交点坐标性质求解.特别需要注意的是抛物线的开口方向未定,所以所求m、n的值将有两组.
(3)利用一元二次方程的判别式等于0求解.当p>0时,m、n的值随之确定;将抛物线的解析式与直线的解析式联立,得到一个一元二次方程;由交点唯一可知,此一元二次方程的判别式等于0,据此求出p的值,从而确定了抛物线的解析式;最后由抛物线的解析式确定其最大值.
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2+bx+c如图,则代数式①ac;②a+b+c;③4a﹣2b+c;④2a+b其值大于0的个数为( )
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=x2+bx+c经过A(﹣1,0)、B(3,0)两点.
(1)求抛物线的解析式和顶点坐标;
(2)若p为x轴上方抛物线上一点,且三角形PAB面积为20,求P点坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某中学数学活动小组在学习了“利用三角函数测高”后,选定测量小河对岸一幢建筑物BC的高度,他们先在斜坡上的D处,测得建筑物顶端B的仰角为30°.且D离地面的高度DE=5m.坡底EA=30m,然后在A处测得建筑物顶端B的仰角是60°,点E,A,C在同一水平线上,求建筑物BC的高.(结果用含有根号的式子表示)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为好玩三角形.若Rt△ABC是好玩三角形,且∠C=90°,BC≥AC,则sinB=_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,函数y=2x+8的图象分别交x轴、y轴于A、B两点,过点A的直线交y轴正半轴于点M,且点M为线段OB的中点.
(1)求直线AM的函数解析式.
(2)试在直线AM上找一点P,使得S△ABP=S△AOB,求出点P的坐标.
(3)若点H为坐标平面内任意一点,在坐标平面内是否存在这样的点H,使以A、B、M、H为顶点的四边形是平行四边形?若存在,请直接写出所有点H的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,⊙O过正方形ABCD的顶点A、D且与边BC相切于点E,分别交AB、DC于点M、N.动点P在⊙O或正方形ABCD的边上以每秒一个单位的速度做连续匀速运动.设运动的时间为x,圆心O与P点的距离为y,图2记录了一段时间里y与x的函数关系,在这段时间里P点的运动路径为( )
A. 从D点出发,沿弧DA→弧AM→线段BM→线段BC
B. 从B点出发,沿线段BC→线段CN→弧ND→弧DA
C. 从A点出发,沿弧AM→线段BM→线段BC→线段CN
D. 从C点出发,沿线段CN→弧ND→弧DA→线段AB
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的方程x2-(m+2)x+(2m-1)=0。
(1)求证:方程恒有两个不相等的实数根;
(2)若此方程的一个根是1,请求出方程的另一个根,并求以此两根为边长的直角三角形的周长。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,正方形纸片ABCD边长为2,折叠∠B和∠D,使两个直角的顶点重合于对角线BD上的一点P,EF、GH分别是折痕(图2),设AE=x(0<x<2),给出下列判断:①x=时,EF+AB>AC;②六边形AEFCHG周长的值为定值;③六边形AEFCHG面积为定值,其中正确的是( )
A.①②B.①③C.②D.②③
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com