【题目】如图1,A、B两点在数轴上对应的数分别为﹣12和4.
(1)直接写出A、B两点之间的距离;
(2)若在数轴上存在一点P,使得AP=PB,求点P表示的数.
(3)如图2,现有动点P、Q,若点P从点A出发,以每秒5个单位长度的速度沿数轴向右运动,同时点Q从点B出发,以每秒2个单位长度的速度沿数轴向左运动,当点Q到达原点O后立即以每秒3个单位长度的速度沿数轴向右运动,求:当OP=4OQ时的运动时间t的值.
【答案】(1)A、B两点之间的距离是16;(2)点P表示的数为﹣8或﹣20;(3)当OP=4OQ时的运动时间t的值为或秒.
【解析】
(1)根据两点间的距离公式即可求出A、B两点之间的距离;
(2)设点P表示的数为x.分两种情况:①点P在线段AB上;②点P在线段BA的延长线上.根据AP=PB列出关于x的方程,求解即可;
(3)根据点Q的运动方向分两种情况:①当t≤2时,点Q从点B出发,以每秒2个单位长度的速度沿数轴向左运动;②当t>2时,点Q从原点O开始以每秒3个单位长度的速度沿数轴向右运动,根据OP=4OQ列出关于t的方程,解方程即可.
(1)A、B两点之间的距离是:4﹣(﹣12)=16.
(2)设点P表示的数为x.分两种情况:
①当点P在线段AB上时,
∵AP=PB,
∴x+12=(4﹣x),
解得x=﹣8;
②当点P在线段BA的延长线上时,
∵AP=PB,
∴﹣12﹣x=(4﹣x),
解得x=﹣20.
综上所述,点P表示的数为﹣8或﹣20;
(3)分两种情况:
①当t≤2时,点Q从点B出发,以每秒2个单位长度的速度沿数轴向左运动,
此时Q点表示的数为4﹣2t,P点表示的数为﹣12+5t,
∵OP=4OQ,
∴12﹣5t=4(4﹣2t),
解得t=,符合题意;
②当t>2时,点Q从原点O开始以每秒3个单位长度的速度沿数轴向右运动,
此时Q点表示的数为3(t﹣2),P点表示的数为﹣12+5t,
∵OP=4OQ,
∴|12﹣5t|=4×3(t﹣2),
∴12﹣5t=12t﹣24,或5t﹣12=12t﹣24,
解得t=,符合题意;或t=,不符合题意舍去.
综上所述,当OP=4OQ时的运动时间t的值为或秒.
科目:初中数学 来源: 题型:
【题目】甲、乙两车从A城出发沿一条笔直公路匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.
(1)A,B两城相距 千米,乙车比甲车早到 小时;
(2)甲车出发多长时间与乙车相遇?
(3)若两车相距不超过20千米时可以通过无线电相互通话,则两车都在行驶过程中可以通过无线电通话的时间有多长?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,已知,,,点是边上的任意一动点,点与点关于直线对称,直线与直线相交于点.
(1)求边上的高;
(2)当为何值时,△与△重叠部分的面积最大,并求出最大值;
(3)连接,当为直角三角形时,求的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,如图,在R t△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于D.
(1)动手操作:利用尺规作,以AB边上一点O为圆心,过A,D两点作⊙O,与AB的另一个交点为E,与AC的另一个交点为F(不写作法,保留作图痕迹),再判断直线BC与⊙O的位置关系,并说明理由。
(2)若∠BAC=60度,CD= ,求线段BD、BE与劣弧DE所围成的图形面积.(结果保留根号和 )
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下表记录的是今年长江某一周内的水位变化情况,这一周的上周末的水位已达到警戒水位米(正号表示水位比前一天上升,负号表示水位比前一天下降).
星期 | 一 | 二 | 三 | 四 | 五 | 六 |
水位 变化(米) | +0.2 | -0.4 | +0.3 |
(1)本周哪一天长江的水位最高?位于警戒水位之上还是之下?
(2)与上周周末相比,本周周末长江的水位是上升了还是下降了?并通过计算说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】根据市卫生防疫部门的要求,游泳池必须定期换水后才能对外开放.在换水时需要经“排水—清冼—灌水”的过程.某游泳馆从早上7:00开始对游泳池进行换水,已知该游泳池的排水速度是灌水速度的1.6倍,其中游泳池内剩余的水量y(m3)与换水时间x(h)之间的函数图象如图所示,根据图象解答下列问题:
(1)填空:该游泳池清洗需要 小时;
(2)求排水过程中的y(m3)与x(h)之间的函数关系式,并写出自变量x的取值范围;
(3)若该游泳馆在换水结束后30分钟才能对外开放,试问游泳爱好者小明能否在中午12:40进入该游泳馆游泳?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,方格图中每个小正方形的边长为1,点A、B、C都是格点.
(1)画出△ABC关于直线MN对称的△A1B1C1;
(2)直接写出AA1的长度;
(3)如图2,A、C是直线MN同侧固定的点,D是直线MN上的一个动点,在直线MN上画出点D,使AD+DC最小.(保留作图痕迹)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com