【题目】阅读第(1)题解答过程填理由,并解答第(2)题
(1)已知:如图1,AB∥CD,P为AB,CD之间一点,求∠B+∠C+∠BPC的大小.
解:过点P作PM∥AB
∵AB∥CD(已知)
∴PM∥CD ,
∴∠B+∠1=180°, .
∴∠C+∠2=180°
∵∠BPC=∠1+∠2
∴∠B+∠C+∠BPC=360°
(2)我们生活中经常接触小刀,如图2小刀刀柄外形是一个直角梯形挖去一个小半圈,其中AF∥EG,∠AEG=90°,刀片上、下是平行的(AB∥CD),转动刀片时会形成∠1和∠2,那么∠1+∠2的大小是否会随刀片的转动面改变,如不改变,求出其大小;如改变,请说明理由.
【答案】(1)如果两条直线都与第三条直线平行,那么这两条直线也互相平行;两直线平行,同旁内角互补;(2)不会变,∠1+∠2=90°.
【解析】
(1)利用平行线的性质,根据两直线平行,同旁内角互补,即可求得答案;
(2)首先过点E作EF∥AB,根据两直线平行,内错角相等,即可求得答案.
解:(1)过点P作PM∥AB
∵AB∥CD(已知)
∴PM∥CD(如果两条直线都与第三条直线平行,那么这两条直线也互相平行),
∴∠B+∠1=180°(两直线平行,同旁内角互补),
∴∠C+∠2=180°(两直线平行,同旁内角互补),
∵∠BPC=∠1+∠2,
∴∠B+∠C+∠BPC=360°.
故答案为:如果两条直线都与第三条直线平行,那么这两条直线也互相平行;两直线平行,同旁内角互补.
(2)不会变,∠1+∠2=90°.
理由:如图2,过点E作EF∥AB,
∵AB∥CD,
∴AB∥EF∥CD,
∴∠3=∠1,∠4=∠2,
∵∠AEC=90°,即∠3+∠4=90°,
∴∠1+∠2=90°.
科目:初中数学 来源: 题型:
【题目】如图①所示是一个长为,宽为的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图②的方式拼成一个正方形.
(1)图②中的阴影部分的正方形的边长等于 .(用含,的代数式表示)
(2)请用两种不同的方法列代数式表示图②中阴影部分的面积:
方法①: .
方法②: .
(3)观察图②,直接写出、、这三个代数式之间的等量关系.
(4)根据(3)题中的等量关系,若,,求图②中阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,动点P从点B出发,沿BC,CD,DA运动到点A停止,设点P运动路程为x,△ABP的面积为y,如果y关于x的函数图象如图(2)所示,则矩形ABCD的面积是( )
A. 10B. 16C. 20D. 36
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD顶点A,D在⊙O上,边BC经过⊙O上一定P,且PF平分∠AFC,边 AB,CD分别与⊙O相交于点E,F,连接EF.
(1)求证:BC是⊙O的切线;
(2)若FC=2,求PC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点D、F在线段AB上,点E、G分别在线段BC和AC上,CD∥EF,∠1=∠2.
(1)判断DG与BC的位置关系,并说明理由;
(2)若DG是∠ADC的平分线,∠3=85°,且∠DCE:∠DCG=9:10,AB与CD有怎样的位置关系?并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知点A和点C分别在直线MN和直线EF上,点B在直线外,∠BAN=α,∠BCF=β.
(1)如图1,若MN∥EF,则∠B= (用α,β的式子表示,不写证明过程)
(2)在(1)的条件下,点T在直线MN与直线EF之间,∠MAT=∠BAN,∠TCB=2∠TCE,求∠B与∠T之间的数量关系.
(3)如图2,若MN不平行于EF,直线AC平分∠MAB,且平分∠ECB,则∠B= (用α,β的式子表示,不写证明过程)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,BD是正方形ABCD的对角线,BC=2,边BC在其所在的直线上平移,将通过平移得到的线段记为PQ,连接PA、QD,并过点Q作QO⊥BD,垂足为O,连接OA、OP.
(1)请直接写出线段BC在平移过程中,四边形APQD是什么四边形?
(2)请判断OA、OP之间的数量关系和位置关系,并加以证明;
(3)在平移变换过程中,设y=S△OPB , BP=x(0≤x≤2),求y与x之间的函数关系式,并求出y的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com