精英家教网 > 初中数学 > 题目详情

【题目】小红不小心把家里的一块圆形玻璃打碎了,需要配制一块同样大小的玻璃镜,工人师傅在一块如图所示的玻璃镜残片的边缘描出了点A,B,C,给出三角形ABC,则这块玻璃镜的圆心是( )

A.AB,AC边上的中线的交点
B.AB,AC边上的垂直平分线的交点
C.AB,AC边上的高所在直线的交点
D.∠BAC与∠ABC的角平分线的交点

【答案】B
【解析】由题意可得,

所求的圆形玻璃是△ABC的外接圆,

∴这块玻璃镜的圆心是△ABC三边垂直平分线的交点,

所以答案是:B.

【考点精析】关于本题考查的三角形的“三线”,需要了解1、三角形角平分线的三条角平分线交于一点(交点在三角形内部,是三角形内切圆的圆心,称为内心);2、三角形中线的三条中线线交于一点(交点在三角形内部,是三角形的几何中心,称为中心);3、三角形的高线是顶点到对边的距离;注意:三角形的中线和角平分线都在三角形内才能得出正确答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】将两个大小不同的含30°角的三角板的直角顶点O重合在一起,保持COD不动,将AOB绕点O旋转,设射线AB与射线DC交于点F.

(1)如图①,若∠AOD=120°,

ABOD的位置关系

②∠AFC的度数=

(2)如图②当∠AOD=130°,求∠AFC的度数.

(3)由上述结果,写出∠AOD和∠AFC的关系

(4)如图③,作∠AFC、AOD的角平分线交于点P,求∠P的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,在Rt△ABC中,∠C=90°,AB=10,BC=6,点P从点A出发,沿折线AB﹣BC向终点C运动,在AB上以每秒5个单位长度的速度运动,在BC上以每秒3个单位长度的速度运动,点Q从点C出发,沿CA方向以每秒 个单位长度的速度运动,P,Q两点同时出发,当点P停止时,点Q也随之停止.设点P运动的时间为t秒.

(1)求线段AQ的长;(用含t的代数式表示)
(2)连结PQ,当PQ与△ABC的一边平行时,求t的值;
(3)如图②,过点P作PE⊥AC于点E,以PE,EQ为邻边作矩形PEQF,点D为AC的中点,连结DF.设矩形PEQF与△ABC重叠部分图形的面积为S.①当点Q在线段CD上运动时,求S与t之间的函数关系式;②直接写出DF将矩形PEQF分成两部分的面积比为1:2时t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在RtABC中,C=90°,沿过B点的一条直线BE折叠这个三角形, 使C点与AB边上的一点D重合.

(1)当A满足什么条件时,点D恰为AB的中点?写出一个你认为适当的条件,并利用此条件证明DAB的中点;

(2)在(1)的条件下,若DE=1,求ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB=30C为射线AB上一点,BCAC4倍少20PQ两点分别从AB两点同时出发.分别以2单位/秒和1单位/秒的速度在射线AB上沿AB方向运动,运动时间为t秒,MBP的中点,NQM的中点,以下结论:①BC=2AC;②运动过程中,QM的长度保持不变;③AB=4NQBQ=PB时,t=12,其中正确结论的个数是(  )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知AB=10,点C在射线AB上,且DAC的中点.

1)依题意,画出图形;(2)依照图形求线段BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校组织了一次防溺水、防交通事故、防食物中毒、防校园欺凌及其他各种安全意识的调查活动,了解同学们在哪些方面的安全意识薄弱,便于今后更好地开展安全教育活动.根据调查结果,绘制出图1,图2两幅不完整的统计图.
请结合图中的信息解答下列问题:

(1)本次调查的人数为 , 其中防校园欺凌意识薄弱的人数占%;
(2)补全条形统计图;
(3)若该校共有1500名学生,请估计该校学生中防溺水意识薄弱的人数;
(4)请你根据题中的信息,给该校的安全教育提一个合理的建议.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某书店老板去图书批发市场购买某种图书,第一次用1200元购书若干本,并按该书定价7元出售,很快售完.由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书的数量比第一次多10本,当按定价售出200本时,出现滞销,便以定价的4折售完剩余的书.

1)第一次购书的进价是多少元?

2)试问该老板这两次售书总体上是赔钱了,还是赚钱了(不考虑其他因素)?若赔钱,赔多少;若赚钱,赚多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】数学“综合与实践”课中,老师带领同学们来到娄底市郊区,测算如图所示的仙女峰的高度,李红盛同学利用已学的数学知识设计了一个实践方案,并实施了如下操作:先在水平地面A处测得山顶B的仰角∠BAC为38.7°,再由A沿水平方向前进377米到达山脚C处,测得山坡BC的坡度为1:0.6,请你求出仙女峰的高度(参考数据:tan38.7°≈0.8)

查看答案和解析>>

同步练习册答案