精英家教网 > 初中数学 > 题目详情
6.解不等式(2x+1)(3x-2)>0时,根据有理数乘法法则“两数相乘,同号得正”有$\left\{\begin{array}{l}{2x+1>0}\\{3x-2>0}\end{array}\right.$①,或$\left\{\begin{array}{l}{2x+1<0}\\{3x-2<0}\end{array}\right.$②,解不等式①,得x>$\frac{2}{3}$;解不等式②,得x<$-\frac{1}{2}$,则不等式(2x+1)(3x-2)>0的解集为x>$\frac{2}{3}$或x<$-\frac{1}{2}$,请参照例题,解不等式$\frac{5x+1}{2x-3}$≤0.

分析 根据例题列出不等式组,解不等式组即可得出答案.

解答 解:根据题意得$\left\{\begin{array}{l}{5x+1≥0}&{\;}\\{2x-3<0}&{\;}\end{array}\right.$或$\left\{\begin{array}{l}{5x+1≤0}\\{2x-3>0}\end{array}\right.$,
解不等式组$\left\{\begin{array}{l}{5x+1≥0}&{\;}\\{2x-3<0}&{\;}\end{array}\right.$得-$\frac{1}{5}$≤x<$\frac{3}{2}$,
解不等式组$\left\{\begin{array}{l}{5x+1≤0}\\{2x-3>0}\end{array}\right.$,得:不等式组无解,
∴不等式$\frac{5x+1}{2x-3}$≤0的解集为-$\frac{1}{5}$≤x<$\frac{3}{2}$.

点评 本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

16.下列命题中是假命题的是(  )
A.若a>b,则2a>2bB.若-2a<-2b,则a>b
C.若a-1<b-1,则a>bD.若a>b,则-a-1<-b-1

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.为了提高学生汉字书写的能力,增强保护汉字的意识,某校举办了首届“汉字听写大赛”,学生经选拔后进入决赛,测试方法是:听写100个汉字,每正确听写出一个汉字得1分,本次决赛,学生成绩为x(分),且50≤x<100,将其按分数段分为五组,绘制出以下不完整表格:
组别成绩x(分)频数(人数)频率
50≤x<6020.04
60≤x<70100.2
70≤x<8014b
80≤x<90a0.32
90≤x<10080.16
请根据表格提供的信息,解答以下问题:
(1)直接写出表中a=16,b=0.28;
(2)请补全右面相应的频数分布直方图;
(3)若决赛成绩不低于80分为优秀,则本次大赛的优秀率为48%.
(4)请根据得到的统计数据,简要分析这些同学的汉字书写能力,并为提高同学们的书写汉字能力提一条建议(所提建议不超过20字)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.一元一次方程$\frac{x}{1×3}$+$\frac{x}{3×5}$+$\frac{x}{5×7}$+…+$\frac{x}{2013×2015}$=$\frac{2014}{2015}$的解是(  )
A.1B.2C.2014D.2015

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.如图是王老师去公园锻炼及原路返回时离家的距离y(千米)与时间t(分钟)之间的函数图象,根据图象信息,下列说法正确的是(  )
A.王老师去时所用的时间少于回家的时间
B.王老师去公园锻炼了40分钟
C.王老师去时走上坡路,回家时走下坡路
D.王老师去时速度比回家时速度慢

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.满足下列条件的△ABC中,不是直角三角形的是(  )
A.b2=c2-a2B.a:b:c=3:4:5C.∠C=∠A-∠BD.∠A:∠B:∠C=3:4:5

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.下列角度中,不可能是多边形内角和的是(  )
A.540°B.630°C.720°D.900°

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.邻边不相等的平行四边形纸片,剪去一个菱形,余下的一个四边形,称为第一次操作;在余下的四边形纸片中再剪去一个菱形,又余下一个四边形,称为第二次操作;…依此类推,若第n次操作余下的四边形是菱形,则称原平行四边形为n阶准菱形,如图1,?ABCD中,若AB=1,BC=2,则?ABCD为1阶准菱形.
(1)猜想与计算:
邻边长分别为3和5的平行四边形是3阶准菱形;已知?ABCD的邻边长分别为a,b(a>b),满足a=8b+r,b=5r,请写出?ABCD是12阶准菱形.
(2)操作与推理:
小明为了剪去一个菱形,进行了如下操作:如图2,把?ABCD沿BE折叠(点E在AD上),使点A落在BC边上的点F处,得到四边形ABFE.请证明四边形ABFE是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.已知关于x的一元二次方程2x2-3kx+4的一个根是1,则k等于(  )
A.2B.-2C.0D.1

查看答案和解析>>

同步练习册答案