【题目】如图,抛物线y=ax2+bx+c与x轴交于点A和点B(1,0),与y轴交于点C(0,3),其对称轴l为x=﹣1.
(1)求抛物线的解析式并写出其顶点坐标;
(2)若动点P在第二象限内的抛物线上,动点N在对称轴l上.
①当PA⊥NA,且PA=NA时,求此时点P的坐标;
②当四边形PABC的面积最大时,求四边形PABC面积的最大值及此时点P的坐标.
【答案】(1)y=﹣(x+1)2+4,顶点坐标为(﹣1,4);(2)①点P(﹣﹣1,2);②P(﹣ , )
【解析】试题分析:(1)将B、C的坐标代入已知的抛物线的解析式,由对称轴为即可得到抛物线的解析式;
(2)①首先求得抛物线与x轴的交点坐标,然后根据已知条件得到PD=OA,从而得到方程求得x的值即可求得点P的坐标;
②,表示出来得到二次函数,求得最值即可.
试题解析:(1)∵抛物线与x轴交于点A和点B(1,0),与y轴交于点C(0,3),其对称轴l为,∴,解得: ,∴二次函数的解析式为=,∴顶点坐标为(﹣1,4);
(2)令,解得或,∴点A(﹣3,0),B(1,0),作PD⊥x轴于点D,∵点P在上,∴设点P(x, ),
①∵PA⊥NA,且PA=NA,∴△PAD≌△AND,∴OA=PD,即,解得x=(舍去)或x=,∴点P(,2);
②设P(x,y),则,∵
=OBOC+ADPD+ (PD+OC)OD==
===,
∴当x=时, =,当x=时, =,此时P(, ).
科目:初中数学 来源: 题型:
【题目】在某校组织的“交通安全宣传教育月”活动中,八年级数学兴趣小组的同学进行了如下的课外实践活动.具体内容如下:在一段笔直的公路上选取两点A、B,在公路另一侧的开阔地带选取一观测点C,在C处测得点A位于C点的南偏西45°方向,且距离为100米,又测得点B位于C点的南偏东60°方向.已知该路段为乡村公路,限速为60千米/时,兴趣小组在观察中测得一辆小轿车经过该路段用时13秒.
(1)请你帮助他们算一算,这辆小车是否超速?(参考数据:≈1.41,≈1.73,计算结果保留两位小数).
(2)请你以交通警察叔叔的身份对此小轿车的行为作出处理意见,并就乡村公路安全管理提出自己的建议。(处理意见合情合理,建议尽量全面。)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读材料:如图1,若,则.
理由:如图,过点作,
则.
因为,
所以,
所以,
所以.
交流:(1)若将点移至图2所示的位置,,此时、、之间有什么关系?请说明理由.
探究:(2)在图3中,,、又有何关系?
应用:(3)在图4中,若,又得到什么结论?请直接写出该结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,E为正方形ABCD的边BC延长线上一点,且CE=AC,AE交CD于点F,那么∠AFC的度数为( )
A. 112.5° B. 125° C. 135° D. 150°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中有三个点,是的边上一点,经平移后得到,点的对应点为.
(1)画出平移后的,写出点的坐标;
(2)的面积为_________________;
(3)若点是轴上一动点,的面积为,求与之间的关系式(用含的式子表示)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,∠CAB=2∠B,AE平分∠CAB,CD⊥AB于D,AC=3,AD=1.下列结论:①∠AEC=∠CAB;②EF=CE;③AC=AE;④BD=4;
正确的是___________(填序号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,抛物线经过点,且与轴的一个交点为.
(1)求抛物线的表达式;
(2)是抛物线与轴的另一个交点,点的坐标为,其中,△的面积为.
①求的值;
②将抛物线向上平移个单位,得到抛物线.若当时,抛物线与轴只有一个公共点,结合函数的图象,求的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在□ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上(E不与A、B重合),连接EF、CF,则下列结论中一定成立的是 ( )
①∠DCF=∠BCD;②EF=CF;③;④∠DFE=4∠AEF.
A. ①②③④ B. ①②③ C. ①② D. ①②④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com