【题目】在△ABC中,∠CAB=2∠B,AE平分∠CAB,CD⊥AB于D,AC=3,AD=1.下列结论:①∠AEC=∠CAB;②EF=CE;③AC=AE;④BD=4;
![]()
正确的是___________(填序号)
科目:初中数学 来源: 题型:
【题目】在如图所示的方格纸中,小正方形的顶点叫做格点,
是一个格点三角形(即
的三个顶点都在格点上),根据要求回答下列问题:
画出
先向左平移6格,再向上平移
格所得的
;
利用网格画出
中
边上的高
.
过点
画直线,将
分成面积相等的两个三角形;
画出与
有一条公共边,且与
全等的格点三角形.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某办公楼AB的后面有一建筑物CD,当光线与地面的夹角是22°时,办公楼在建筑物的墙上留下高3米的影子CE,而当光线与地面夹角是45°时,办公楼顶A在地面上的影子F与墙角C有27米的距离(B,F,C在一条直线上).
![]()
(1)求办公楼AB的高度;
(2)若要在A,E之间挂一些彩旗,请你求出A,E之间的距离.
(参考数据:sin22°≈
,cos22°≈
,tan22°≈
)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+c与x轴交于点A和点B(1,0),与y轴交于点C(0,3),其对称轴l为x=﹣1.
(1)求抛物线的解析式并写出其顶点坐标;
(2)若动点P在第二象限内的抛物线上,动点N在对称轴l上.
①当PA⊥NA,且PA=NA时,求此时点P的坐标;
②当四边形PABC的面积最大时,求四边形PABC面积的最大值及此时点P的坐标.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD与矩形EFGH在直线
的同侧,边AD,EH在直线
上,且AD=5 cm,EH=4 cm, EF=3 cm.保持正方形ABCD不动,将矩形EFGH沿直线
左右移动,连接BF、CG,则BF+CG的最小值为( )
![]()
A. 4B.
C.
D. 5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转,如果这三种情况是等可能的,当三辆汽车经过这个十字路口时:
(1)请你用列表或画树状图的方法,表示出所有可能的结果;
(2)三辆车全部同向而行的概率是 ,至少有两辆车向左转的概率是 ;
(3)由于十字路口右拐弯处是通往新建经济开发区的,因此交管部门在汽车行驶高峰时段对车流量作了统计,发现汽车在此十字路口向右转的频率为
,向左转和直行的频率均为
.目前在此路口,汽车左转、右转、直行的绿灯亮的时间分别为30秒,在绿灯亮总时间不变的条件下,为了缓解交通拥挤,请你用统计的知识对此路口三个方向的绿灯亮的时间做出合理的调整.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中
,
.
(1)操作发现
①固定
,使
绕点C旋转.当点D恰好落在AB边上时(如图2);线段DE与AC的位置关系是________,请证明;
②设
的面积为
,
的面积为
,则
与
的数量关系是________.
(2)猜想论证
当
绕点C旋转到图3所示的位置时,小明猜想(1)中
与
的数量关系仍然成立,请你分别作出
和
中BC、CE边上的高,并由此证明小明的猜想.
(3)拓展探究
己知
,点D是其角平分线上一点,
,
交BC于点E(如图4),请问在射线BA上是否存在点F,使
,若存在,请直接写出符合条件的点F的个数,若不存在,请说明理由.
图1 图2
图3 图4
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com