精英家教网 > 初中数学 > 题目详情

【题目】如图,已知正方形ABCD,对角线AC、BD交于点O,点E在对角线BD上,连接AE.点GAD延长线上一点,DF平分∠GDC,且DF=BE,连接FB、FC,FBAC交于点M.

(1)若点EBD的三等分点(DE<BE),BF=,求△ABE的面积;

(2)求证:DE=2CM.

【答案】(1)18;(2)证明见解析.

【解析】

(1)由点EBD的三等分点,设BE=DF=2x,DE=x. RtBDF中,根据勾股定理得BD+DF=BF,即可求出的值,根据三角形的面积公式求解即可.

(2)延长DF、BC交于点H.证明EBA≌△FDC,根据全等三角形的性质得到AE=CF,AEB=CFD,再证明AED≌△CFH,即可证明.

解:(1)由题意易得∠BDF=90°,

∵点EBD的三等分点(DE<BE)

∴设BE=DF=2x,DE=x.

RtBDF中,∠BDF=90°

BD+DF=BF

9x+4x=156解得x=

BE=2x=,AO=BD=

∴△ABE面积=·BE·AO==18.

(2)同时延长DF、BC交于点H.

OBD中点,OCDF

MBF中点,CBH中点.

CMBFH的中位线.

FH=2CM.

EBAFDC

EB=FD;ABE=FDC=45°,CD=AB

∴△EBA≌△FDC(SAS).

AE=CF,AEB=CFD

∴∠AED=CFH.

CMFH

∴∠H=ACB=ADB=45°.

AEDCFH

ADB=H,AED=CFH,AE=CF

∴△AED≌△CFH(AAS)

DE=FH=2CM.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】以直线x=1为对称轴的抛物线y=-x2+bx+c与x轴交于A、B两点,其中点A的坐标为(3,0).

(1)求点B的坐标;

(2)设点M(x1,y1)、N(x2,y2)在抛物线线上,且x1<x2<1,试比较y1、y2的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,点HDC上一点,BDAH交于点OABO为等边三角形,点E在线段AO上,ODOE,连接BE,点FBE的中点,连接AF并延长交BC于点G,且∠GAD60°

1)若CH2AB4,求BC的长;

2)求证:BDAB+AE

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在等边ABC中,以BC为直径的⊙OAB交于点DDEAC,垂足为点E

1)求证:DE为⊙O的切线;

2)计算.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】RtABC中,∠C=90°,AC=20cm,BC=15cm.现有动点P从点A出发,沿AC向点C方向运动,动点Q从点C出发,沿线段CB也向点B方向运动.如果点P的速度是4cm/秒,点Q的速度是2cm/秒,它们同时出发,当有一点到达所在线段的端点时,就停止运动,设运动的时间为t秒.

(1)用含t的代数式表示RtCPQ的面积S;

(2)t=3秒时,P、Q两点之间的距离是多少?

(3)t为多少秒时,以点C、P、Q为顶点的三角形与△ABC相似?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,E为BC边上一点,连结AE.已知AB=8,CE=2,F是线段AE上一动点.若BF的延长线交正方形ABCD的一边于点G,且满足AE=BG,则的值为________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】求证:相似三角形面积的比等于相似比的平方.(请根据题意画出图形,写出已知,求证并证明)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度y (℃)与时间x(h)之间的函数关系,其中线段AB、BC表示恒温系统开启阶段,双曲线的一部分CD表示恒温系统关闭阶段.

请根据图中信息解答下列问题:

(1)求这天的温度y与时间x(0≤x≤24)的函数关系式;

(2)求恒温系统设定的恒定温度;

(3)若大棚内的温度低于10℃时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题提出:如果一个多边形的各个顶点均在另一个多边形的边上,则称这个多边形为另一多边形的内接多边形

问题探究:

(1)如图1,正方形PEFG的顶点EF在等边三角形ABC的边AB上,顶点PAC边上.请在等边三角形ABC内部,以A为位似中心,作出正方形PEFG的位似正方形P'E'F'G',且使正方形P'E'F'G'的面积最大(不写作法)

(2)如图2,在边长为4正方形ABCD中,画出一个面积最大的内接正三角形,并求此最大内接正三角形的面积

拓展应用:

(3)如图3,在边长为4的正方形ABCD中,能不能截下一个面积最大的直角三角形,并使其三边比为3:4:5,若能,请求出此直角三角形的最大面积,若不能,请说明理由.

查看答案和解析>>

同步练习册答案