精英家教网 > 初中数学 > 题目详情

【题目】如图,在正方形ABCD中,E为BC边上一点,连结AE.已知AB=8,CE=2,F是线段AE上一动点.若BF的延长线交正方形ABCD的一边于点G,且满足AE=BG,则的值为________

【答案】1

【解析】

根据题意进行分情况讨论,当点GAD边上时,根据AE=BG,AB=AB, ∠BAG=∠ABE=90°,可证ABG≌△BAE,可得AG=BE,根据AG∥BE,可得,G’CD上时,根据全等三角形的判定方法可证ABE≌△BCG可得∠BAE=∠CBG’,

根据∠CBG’+∠ABF’=90°,可得∠BAE+∠ABF’=90°,继而可得: ∠AF’B=90°,可得BG’ ⊥AE,根据AB=8,BE=6,根据勾股定理可得:AE=10,根据等面积法可得:BF’=,F’G’=,

可得.

(1)当点GAD边上时,

因为AE=BG,AB=AB, ∠BAG=∠ABE=90°,

所以ABG≌△BAE,

所以AG=BE,

因为AG∥BE,

所以,

(2)G’CD上时,

同理可证ABE≌△BCG’,

所以BAE=∠CBG’,

因为∠CBG’+∠ABF’=90°,

所以∠BAE+∠ABF’=90°,

所以AF’B=90°,

所以BG’ ⊥AE,

根据AB=8,BE=6,根据勾股定理可得:AE=10,

根据等面积法可得:BF’=,F’G’=,

所以.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,二次函数y=+bx+c的图象经过点A(1,0),且当x=0和x=5时所对应的函数值相等.一次函数y=x+3与二次函数y=+bx+c的图象分别交于B,C两点,点B在第一象限.

(1)求二次函数y=+bx+c的表达式;

(2)连接AB,求AB的长;

(3)连接AC,M是线段AC的中点,将点B绕点M旋转180°得到点N,连接AN,CN,判断四边形ABCN的形状,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的一元二次方程x2+(m+3)xm+1=0.

(1)求证:无论m取何值,原方程总有两个不相等的实数根

(2)x1x2是原方程的两根,且|x1x2|=2,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:在四边形ABCD中,对角线AC、BD相交于点E,且ACBD,作BFCD,垂足为点F,BFAC交于点C,BGE=ADE.

(1)如图1,求证:AD=CD;

(2)如图2,BHABE的中线,若AE=2DE,DE=EG,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于ADE面积的2倍.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知正方形ABCD,对角线AC、BD交于点O,点E在对角线BD上,连接AE.点GAD延长线上一点,DF平分∠GDC,且DF=BE,连接FB、FC,FBAC交于点M.

(1)若点EBD的三等分点(DE<BE),BF=,求△ABE的面积;

(2)求证:DE=2CM.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】探究:如图,在△ABC 中,∠BAC=90°,AB=AC,直线 m 经过点 A,BD⊥m 于点 D,CE⊥m 于点 E,求证:△ABD≌△CAE.

应用:如图,在△ABC 中,AB=AC,D、A、E 三点都在直线 m 上,并且有∠BDA=∠AEC=∠BAC,求证:DE=BD+CE.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某宾馆有50个房间供游客住宿,当每个房间的房价为每天180元时,房间会全部住满.当每个房间 每天的房价每增加10元时,就会有一个房间空闲.宾馆需对游客居住的每个房间每天支出20元的各种费用.根据规定,每个房间每天的房价不得高于340元.设每个房间的房价增加x元(x10的正整数倍).

1)设一天订住的房间数为y,直接写出yx的函数关系式及自变量x的取值范围;

2)设宾馆一天的利润为w元,求wx的函数关系式;

3)一天订住多少个房间时,宾馆的利润最大?最大利润是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,以原点为端点的两条射线与反比例函数交于两点,且,则的面积是________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=x2+2x+m.

(1)如果二次函数的图象与x轴有两个交点,求m的取值范围;

(2)如图,二次函数的图象过点A(3,0),与y轴交于点B,直线AB与这个二次函数图象的对称轴交于点P,求点P的坐标.

(3)根据图象直接写出使一次函数值大于二次函数值的x的取值范围.

查看答案和解析>>

同步练习册答案