精英家教网 > 初中数学 > 题目详情
如图,⊙O的直径CD与弦AB垂直相交于点E,且BC=1,AD=2,求⊙O的直径长.
考点:圆周角定理,勾股定理,相似三角形的判定与性质
专题:
分析:首先由圆周角定理,易证得△ADE∽△CBE,然后由相似三角形的对应边成比例,求得AE=BE,再设CE=x,则AE=BE=2x,DE=4x,利用勾股定理即可求得x的值,继而求得答案.
解答:解:∵∠A=∠C,∠B=∠D,
∴△ADE∽△CBE,
CE
AE
=
BE
DE
=
1
2

∵CD与弦AB垂直相交于点E,
∴AE=BE,
设CE=x,则AE=BE=2x,DE=4x,
在△CBE中,BC=1,
∴x2+(2x)2=12
x=
5
5

∴CE=
5
5
,DE=
4
5
5

∴直径CD=
5
点评:此题考查了圆周角定理、相似三角形的判定与性质以及勾股定理.此题难度适中,注意掌握数形结合思想与方程思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

作图:在数轴上找到表示实数-
3
的点.(要求简要解释作图过程)

查看答案和解析>>

科目:初中数学 来源: 题型:

在△ABC中,AB=AC=10,BD是AC边上的高,DC=2,则BD等于(  )
A、2
10
B、4
C、6
D、8

查看答案和解析>>

科目:初中数学 来源: 题型:

已知正比例函数y=(2m-1)x的图象上两点A(x1,y1),B(x2,y2),当x1<x2时,有y1>y2,则m的取值范围是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

已知⊙O是△ABC的外接圆,OD⊥BC且交BC于点D,∠BOD=40°,则∠BAC=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

计算:
(1)(
2
3
100×(1
1
2
100×(
1
4
2013×42014
(2)(1+
1
2
)(1+
1
22
)(1+
1
24
)(1+
1
28
)+
1
215

查看答案和解析>>

科目:初中数学 来源: 题型:

下列长度的三条线段中,能组成三角形的是(  )
A、3,4,8
B、5,6,11
C、4,6,7
D、4,4,10

查看答案和解析>>

科目:初中数学 来源: 题型:

解下列方程:
(1)(y-5)+2=3-4(y-1);    
(2)4-
3y-5
8
=3-
y-2
12

查看答案和解析>>

科目:初中数学 来源: 题型:

-32+(-23)-(-25)-34+42.

查看答案和解析>>

同步练习册答案