精英家教网 > 初中数学 > 题目详情
16.正方形ABCD的边长为1,其面积记为S1,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积记为S2,…按此规律继续下去,则S9的值为(  )
A.${({\frac{1}{2}})^9}$B.${({\frac{1}{2}})^8}$C.${({\frac{{\sqrt{2}}}{2}})^9}$D.${({\frac{{\sqrt{2}}}{2}})^8}$

分析 根据等腰直角三角形的性质可得出S2+S2=S1,写出部分Sn的值,根据数的变化找出变化规律Sn=($\frac{1}{2}$)n-1,依此规律即可得出结论.

解答 解:在图中标上字母E,如图所示.

∵正方形ABCD的边长为1,△CDE为等腰直角三角形,
∴DE2+CE2=CD2,DE=CE,
∴S2+S2=S1
观察,发现规律:S1=12=1,S2=$\frac{1}{2}$S1=$\frac{1}{2}$,S3=$\frac{1}{2}$S2=$\frac{1}{4}$,S4=$\frac{1}{2}$S3=$\frac{1}{8}$,…,
∴Sn=($\frac{1}{2}$)n-1
当n=9时,S9=($\frac{1}{2}$)9-1=($\frac{1}{2}$)8
故选:B.

点评 本题考查了等腰直角三角形的性质、勾股定理以及规律型中数的变化规律,解题的关键是找出规律Sn=($\frac{1}{2}$)n-1.本题属于中档题,难度不大,解决该题型题目时,写出部分Sn的值,根据数值的变化找出变化规律是关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

6.如图,在△ABA1中,∠B=20°,AB=A1B,在A1B上取一点C,延长AA1到A2,使得A1A2=A1C,在A2C上取一点D,延长A1A2到A3,使得A2A3=A2D,按此做法进行下去,∠EA3A2的度数为20°,∠A的度数为80°.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.如图是一个正方体纸盒的表面展开图,若在其中三个正方形A、B、C内分别填入适当的数,使它折成正方体后相对的面上的两数互为相反数,则填在正方形A、B、C内的三个数依次为(  )
A.-2,1,0B.1,-2,0C.0,-2,1D.-2,0,1

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.已知:2(x+5)2+3|y-2|=0,则xy=25.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.如图所示,菱形ABCD的对角线的长分别为4和6,P是对角线AC上任一点(点P不与点A、C重合),且PE∥BC交AB于E,PF∥CD交AD于F,则阴影部分的面积是6.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.已知:1+3=4=22,1+3+5=9=32,1+3+5+7=16=42,1+3+5+7+9=25=52,…,根据前面各式的规律可猜测:101+103+105+…+199=7500.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.不等式组$\left\{\begin{array}{l}{x+1>0}\\{x+2≥4x-1}\end{array}\right.$的解集为-1<x≤1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图1,△ABC是等腰直角三角形,∠BAC=90°,AB=AC,四边形ADEF是正方形,点B.C分别在边AD、AF上,此时BD=CF,BD⊥CF成立.

(1)当△ABC绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明,若不成立,请说明理由.
(2)当△ABC绕点A逆时针旋转45°时,如图3,延长BD交CF于点H.
①探究BD与CF之间的位置关系,并说明理由;
②当AB=$\sqrt{2}$,AD=$\sqrt{3}+1$时,求线段DH的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.在行驶完某段全程600千米的高速公路时,李师傅对张师傅说:“你的车速太快了,平均每小时比我多跑20千米,比我少用1.5小时就跑完了全程.”
(1)若这段高速公路全程限速110千米/时,如若两人全程均匀速行驶,那么张师傅超速了吗?请说明理由.
(2)张师傅所行使的车内邮箱余油量y(升)与行使时间t(时)的函数关系如图所示,则行驶完这段高速公路,他至少需要多少升油?

查看答案和解析>>

同步练习册答案