【题目】如图,在△ABC中,已知,AB=AC=6,BC=10.E是C边上一动点(E不与点B、C重合),△DEF≌△ABC.其中点A,B的对应点分别是点D、E,且点E在运动时,DE边始终经过点A,设EF与AC相交于点G,当△AEG为等腰三角形时,则BE的长为_____.
【答案】4或6.4.
【解析】
题目要求△AEG为等腰三角形,但没有说明哪两边为腰,这种一般都要分情况讨论,根据,且为的外角,可得,所以,首先排除一种情况,剩下两种与,根据全等三角形与相似三角形的性质求解即可.
解:∵∠AEF=∠B=∠C,且∠AGE>∠C,
∴∠AGE>∠AEF,
∴AE≠AG;
当AE=EG时,则△ABE≌△ECG,
∴CE=AB=6,
∴BE=BC﹣EC=10﹣6=4;
当AG=EG时,则∠GAE=∠GEA,
∴∠GAE+∠BAE=∠GEA+∠CEG,
即∠CAB=∠CEA,
又∵∠C=∠C,
∴△CAE∽△CBA,
∴=,
∴CE===3.6,
∴BE=10﹣3.6=6.4;
∴BE=4或6.4.
故答案为4或6.4.
科目:初中数学 来源: 题型:
【题目】如图1,在平面直角坐标系中,抛物线y=﹣x2+x+与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,对称轴与x轴交于点D.
(1)求直线BC的解析式;
(2)如图2,点P为直线BC上方抛物线上一点,连接PB、PC.当△PBC的面积最大时,在线段BC上找一点E(不与B、C重合),使PE+BE的值最小,求点P的坐标和PE+BE的最小值;
(3)如图3,点G是线段CB的中点,将抛物线y=﹣x2+x+沿x轴正方向平移得到新抛物线y′,y′经过点D,y′的顶点为F.在抛物线y′的对称轴上,是否存在一点Q,使得△FGQ为直角三角形?若存在,直接写出点Q的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线:与轴交于两点(在的左侧),与轴交于点.
(1)求抛物线的解析式及两点的坐标;
(2)求抛物线的顶点坐标;
(3)将抛物线向上平移3个单位长度,再向右平移个单位长度,得到抛物线.①若抛物线的顶点在内,求的取值范围;②若抛物线与线段只有一个交点,直接写出的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线AD经过⊙O上的点A,△ABC为⊙O的内接三角形,并且∠CAD=∠B.
(1)判断直线AD与⊙O的位置关系,并说明理由;
(2)若∠CAD=30°,⊙O的半径为1,求图中阴影部分的面积.(结果保留π)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】A、B两所学校的学生都参加了某次体育测试,成绩均为7﹣10分,且为整数.亮亮分别从这两所学校各随机抽取一部分学生的测试成绩,共200份,并绘制了如下尚不完整的统计图.
(1)这200份测试成绩的中位数是 分,m= ;
(2)补全条形统计图;扇形统计图中,求成绩为10分所在扇形的圆心角的度数.
(3)亮亮算出了“1名A校学生的成绩被抽到”的概率是,请你估计A校成绩为8分的学生大约有多少名.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=ax2+bx-3的图象与x轴相交于A(-1,0),B(3,0)两点.与y轴相交于点C
(1)求这个二次函数的解析式.
(2)若P是第四象限内这个二次函数的图象上任意一点,PH⊥x轴于点H,与BC交于点M,请问:当点P的坐标为多少时,线段PM的长最大?并求出这个最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,航拍无人机从A处测得一幢建筑物顶部B的仰角为45°,测得底部C的俯角为60°,此时航拍无人机与该建筑物的水平距离AD为110m,那么该建筑物的高度BC约为_____m(结果保留整数,≈1.73).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某超市用1200元购进一批甲玩具,用800元购进一批乙玩具,所购甲玩具件数是乙玩具件数的,已知甲玩具的进货单价比乙玩具的进货单价多1元.
(1)求:甲、乙玩具的进货单价各是多少元?
(2)玩具售完后,超市决定再次购进甲、乙玩具(甲、乙玩具的进货单价不变),购进乙玩具的件数比甲玩具件数的2倍多60件,求:该超市用不超过2100元最多可以采购甲玩具多少件?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知y关于x的函数表达式是,下列结论不正确的是( )
A.若,函数的最大值是5
B.若,当时,y随x的增大而增大
C.无论a为何值时,函数图象一定经过点
D.无论a为何值时,函数图象与x轴都有两个交点
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com