【题目】A、B两所学校的学生都参加了某次体育测试,成绩均为7﹣10分,且为整数.亮亮分别从这两所学校各随机抽取一部分学生的测试成绩,共200份,并绘制了如下尚不完整的统计图.
(1)这200份测试成绩的中位数是 分,m= ;
(2)补全条形统计图;扇形统计图中,求成绩为10分所在扇形的圆心角的度数.
(3)亮亮算出了“1名A校学生的成绩被抽到”的概率是,请你估计A校成绩为8分的学生大约有多少名.
【答案】(1)9,12;,(2)补图见解析,162°;(3)220.
【解析】
(1)根据中位数的定义即可得到答案;
(2)根据扇形统计图中的数据补全条形统计图,进而得到成绩为10分所在扇形的圆心角的度数,即可;
(3)先算出A校总人数(8+20+38+54)÷=1320(名),再计算A校成绩为8分的学生数,即可.
(1)由题意得:把这些成绩按大小排列后,第100,101 位数都是9分,故中位数是9,
m=(20+12)÷16%×10%﹣8=12(名);
故答案为:9,12;
(2)B校成绩为9分的人数为:200×29%﹣38=20(名),
补全条形统计图如图所示;
成绩为10分所在扇形的圆心角的度数为×360°=162°;
(3)由题意可得:(8+20+38+54)÷=1320(名),
1320×=220(名).
答:A校成绩为8分的学生大约有220名.
科目:初中数学 来源: 题型:
【题目】已知抛物线y=ax2-x+c的对称轴为直线x=-1,与x轴交于点A(-4,0)和点B,与y轴交于点C,点D(m,n)为坐标轴中一点,点O为坐标原点.
(1)求抛物线的解析式;
(2)若m=0,∠DAB=∠BCO,射线AD与抛物线交于点H,请画出图形,求出点H的坐标;
(3)若n=5,m≠-1,直线DE和DF(不与x轴垂直)都与抛物线只有一个公共点,DE和DF分别与对称轴交于点M,N,点P为对称轴上(M,N下方)一点,当PD2=PMPN时,请画出图形,求出点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小刚从家出发匀速步行去学校上学.几分钟后发现忘带数学作业,于是掉头原速返回并立即打电话给爸爸,挂断电话后爸爸立即匀速跑步去追小刚,同时小刚以原速的两倍匀速跑步回家,爸爸追上小刚后以原速的倍原路步行回家.由于时间关系小明拿到作业后同样以之前跑步的速度赶往学校,并在从家出发后23分钟到校(小刚被爸爸追上时交流时间忽略不计).两人之间相距的路程y(米)与小刚从家出发到学校的步行时间x(分钟)之间的函数关系如图所示,则小刚家到学校的路程为_____米.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们已经知道一些特殊的勾股数,如三连续正整数中的勾股数:3、4、5;三个连续的偶数中的勾股数6、8、10;事实上,勾股数的正整数倍仍然是勾股数.
(1)另外利用一些构成勾股数的公式也可以写出许多勾股数,毕达哥拉斯学派提出的公式:a=2n+1,b=2n2+2n,c=2n2+2n+1(n为正整数)是一组勾股数,请证明满足以上公式的a、b、c的数是一组勾股数.
(2)然而,世界上第一次给出的勾股数公式,收集在我国古代的着名数学着作《九章算术》中,书中提到:当a=(m2﹣n2),b=mn,c=(m2+n2)(m、n为正整数,m>n时,a、b、c构成一组勾股数;利用上述结论,解决如下问题:已知某直角三角形的边长满足上述勾股数,其中一边长为37,且n=5,求该直角三角形另两边的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2019年女排世界杯于9月在日本举行,中国女排以十一连胜的骄人成绩卫冕冠军,充分展现了团队协作、顽强拼搏的女排精神.如图是某次比赛中垫球时的动作,若将垫球后排球的运动路线近似的看作拋物线,在同一竖直平面内建立如图所示的直角坐标系,已知运动员垫球时(图中点)离球网的水平距离为5米,排球与地面的垂直距离为0.5米,排球在球网上端0.26米处(图中点)越过球网(女子排球赛中球网上端距地面的高度为2.24米),落地时(图中点)距球网的水平距离为2.5米,则排球运动路线的函数表达式为( )
A.B.
C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】综合与实践
问题情境
数学活动课上,老师让同学们以“三角形的旋转”为主题开展数学活动,和是两个全等的直角三角形纸片,其中,,.
解决问题
(1)如图①,智慧小组将绕点顺时针旋转,发现当点恰好落在边上时,,请你帮他们证明这个结论;
(2)缜密小组在智慧小组的基础上继续探究,连接,当C绕点继续旋转到如图②所示的位置时,他们提出,请你帮他们验证这一结论是否正确,并说明理由;
探索发现
(3)如图③,勤奋小组在前两个小组的启发下,继续旋转,当三点共线时,求的长;
(4)在图①的基础上,写出一个边长比为的三角形(可添加字母).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了解某区八年级学生的睡眠情况,随机抽取了该区八年级学生部分学生进行调查.已知D组的学生有15人,利用抽样所得的数据绘制所示的统计图表.
一、学生睡眠情况分组表(单位:小时)
组别 | 睡眠时间 |
二、学生睡眠情况统计图
根据图表提供的信息,回答下列问题:
(1)试求“八年级学生睡眠情况统计图”中的a的值及a对应的扇形的圆心角度数;
(2)如果睡眠时间x(时)满足:,称睡眠时间合格.已知该区八年级学生有3250人,试估计该区八年级学生睡眠时间合格的共有多少人?
(3)如果将各组别学生睡眠情况分组的最小值(如C组别中,取),B、C、D三组学生的平均睡眠时间作为八年级学生的睡眠时间的依据.试求该区八年级学生的平均睡眠时间.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线y=﹣x2+x﹣1与x轴交于点A,B(点A在点B的左侧),与y轴交于点C,其顶点为D.将抛物线位于直线l:y=t(t<)上方的部分沿直线l向下翻折,抛物线剩余部分与翻折后所得图形组成一个“M”形的新图象.
(1)求点A,B,D的坐标
(2)如图①,抛物线翻折后,点D落在点E处.当点E在△ABC内(含边界)时,求t的取值范围;
(3)如图②,当t=0时,若Q是“M”形新图象上一动点,是否存在以CQ为直径的圆与x轴相切于点P?若存在,直接写出出点P的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com