【题目】综合与实践
问题情境
数学活动课上,老师让同学们以“三角形的旋转”为主题开展数学活动,和是两个全等的直角三角形纸片,其中,,.
解决问题
(1)如图①,智慧小组将绕点顺时针旋转,发现当点恰好落在边上时,,请你帮他们证明这个结论;
(2)缜密小组在智慧小组的基础上继续探究,连接,当C绕点继续旋转到如图②所示的位置时,他们提出,请你帮他们验证这一结论是否正确,并说明理由;
探索发现
(3)如图③,勤奋小组在前两个小组的启发下,继续旋转,当三点共线时,求的长;
(4)在图①的基础上,写出一个边长比为的三角形(可添加字母).
【答案】(1)详见解析;(2)正确,理由详见解析;(3);(4)答案不唯一,合理即可.
【解析】
(1)如图①中,根据旋转的性质可得AC=CD,然后求出△ACD是等边三角形,根据等边三角形的性质可得∠ACD=60°,然后根据内错角相等,两直线平行进行解答;
(2)如图②中,作DM⊥BC于M,AN⊥EC交EC的延长线于N.根据旋转的性质可得BC=CE,AC=CD,再求出∠ACN=∠DCM,然后利用“角角边”证明△ACN和△DCM全等,根据全等三角形对应边相等可得AN=DM,然后利用等底等高的三角形的面积相等证明.
(3)如图③中,作CH⊥AD于H.解直角三角形求出AD,证明∠BAD=90°,利用勾股定理即可解决问题.
(4)根据含有30°的直角三角形的三边之比为1::2求解即可.
(1)如图①中,∵△DEC绕点C旋转点D恰好落在AB边上,
∴AC=CD,
∵∠BAC=90°-∠B=90°-30°=60°,
∴△ACD是等边三角形,
∴∠ACD=60°,
又∵∠CDE=∠BAC=60°,
∴∠ACD=∠CDE,
∴DE∥AC;
(2)如图②中,作DM⊥BC于M,AN⊥EC交EC的延长线于N.
∵△DEC是由△ABC绕点C旋转得到
∴BC=CE,AC=CD,
∵∠ACN+∠BCN=90°,∠DCM+∠BCN=180°-90°=90°,
∴∠ACN=∠DCM,
在△ACN和△DCM中,
,
∴△ACN≌△DCM(AAS),
∴AN=DM,
∴△BDC的面积和△AEC的面积相等(等底等高的三角形的面积相等),
即S△BDC=S△AEC.
(3)如图③中,作CH⊥AD于H.
∵,
∵B,A,E共线,
∴∠BAC+∠EAC=180°,
∴∠EAC=120°,
∵∠EDC=60°,
∴∠EAC+∠EDC=180°,
∴A,E,D,C四点共圆,
∴∠CAD=∠CED=30°,∠BAD=90°,
∵CA=CD,CH⊥AD,AC=CD=AB=2
∴AH=DH=ACcos30°=,
∴AD=2,
∴.
(4)如图①中,设DE交BC于T.
因为含有30°的直角三角形的三边之比为1::2,
由(1)可知△BDT,△DCT,△ECT都是含有30°的直三角形,
∴△BDT,△DCT,△ECT符合条件.
科目:初中数学 来源: 题型:
【题目】如图1,点P是平面内任意一点,点A,B是上不重合的两个点,连结.当时,我们称点P为的“关于的关联点”.
(1)如图2,当点P在上时,点P是的“关于的关联点”时,画出一个满足条件的,并直接写出的度数;
(2)在平面直角坐标系中有点,点M关于y轴的对称点为点N.
①以点O为圆心,为半径画,在y轴上存在一点P,使点P为“关于的关联点”,直接写出点P的坐标;
②点是x轴上一动点,当的半径为1时,线段上至少存在一点是的“关于某两个点的关联点”,求m的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD内部有若干个点,则用这些点以及正方形ABCD的顶点A、B、C、D把原正方形分割成一些三角形(互相不重叠):
(1)填写下表:
正方形ABCD内点的个数 | 1 | 2 | 3 | 4 | ... | n |
分割成三角形的个数 | 4 | 6 | _____ | _____ | ... | _____ |
(2)原正方形能否被分割成2021个三角形?若能,求此时正方形ABCD内部有多少个点?若不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场经销一种成本价为20元/件的商品,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于成本价的1.8倍,在试销售过程中发现每天的销量y(件)与售价x(元/件)之间满足一次函数关系,对应关系如下表所示:
(1)求y与x之间的函数表达式,并写出自变量x的取值范围;
(2)该商场销售这种商品每天所获得的利润为w元,若每天销售这种商品需支付人员工资、管理费等各项费用共200元,求w与x之间的函数表达式;并求出这种商品销售单价定为多少时,才能使商场每天获取的利润最大?最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,一次函数的图象与反比例函数 的图象相交于第一、三象限内的两点,与轴交于点 .
⑴求该反比例函数和一次函数的解析式;
⑵在轴上找一点使最大,求的最大值及点的坐标;
⑶直接写出当时,的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=9,AD=6,点O为对角线AC的中点,点E在DC的延长线上且CE=1.5,连接OE,过点O作OF⊥OE交CB延长线于点F,连接FE并延长交AC的延长线于点G,则=_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD内接于⊙O,BD是⊙O的直径,AE⊥CD于点E,DA平分∠BDE.
(1)求证:AE是⊙O的切线;
(2)如果AB=4,AE=2,求⊙O的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B两点(点A在点B的左侧),与y轴交于点C(0,3),作直线BC.动点P在x轴上运动,过点P作PM⊥x轴,交抛物线于点M,交直线BC于点N,设点P的横坐标为m.
(1)求抛物线的解析式;
(2)当点P在线段OB上运动时,求线段MN的最大值;
(3)是否存在点P,使得以点C、O、M、N为顶点的四边形是平行四边形?若存在,请直接写出m的值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com