【题目】如图1,点P是平面内任意一点,点A,B是上不重合的两个点,连结.当时,我们称点P为的“关于的关联点”.
(1)如图2,当点P在上时,点P是的“关于的关联点”时,画出一个满足条件的,并直接写出的度数;
(2)在平面直角坐标系中有点,点M关于y轴的对称点为点N.
①以点O为圆心,为半径画,在y轴上存在一点P,使点P为“关于的关联点”,直接写出点P的坐标;
②点是x轴上一动点,当的半径为1时,线段上至少存在一点是的“关于某两个点的关联点”,求m的取值范围.
【答案】(1)详见解析;(2)①或;②
【解析】
(1)由题意当点P在在上时,点P是的“关于的关联点”时,则圆心角∠ACB=120°,由此作图即可;
(2)①设点P(0,y),连接MP,NP,MN交y轴于点Q,由题意及对称性可得△PMN为等边三角形,然后根据锐角三角函数值求PQ的长,从而确定点P的坐标;
②考虑临界情况,即恰好M、N点为⊙D的关联时,确定点D的坐标,从而求其取值范围.
解:(1)补全图形
由题意可知,∠APB=60°,点P在圆上
∴∠ACB=120°
(2)①设点P(0,y),连接MP,NP,MN交y轴于点Q
由题意可知,∠MPN=60°
又∵点M关于y轴的对称点为点N
∴△PMN为等边三角形
∴在Rt△MPQ中,
,解得:或0
∴或
②当点D位于M点右侧且点M在圆上时,此时m有最大值,
由题意可知,此时∠OMD=60°,∴m=2
当点D位于N点左侧且点N在圆上时,此时m有最小值,
由题意可知,此时∠OMD=60°,∴m=-2
∴
科目:初中数学 来源: 题型:
【题目】如图,在直角梯形ABCD中,AB∥CD,∠C=90°,以AD为直径的⊙O与BC相切于点E,交CD于点F,连接DE.
(1)证明:DE平分∠ADC;
(2)已知AD=4,设CD的长为x(2<x<4).
①当x=2.5时,求弦DE的长度;
②当x为何值时,DFFC的值最大?最大值是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一艘海轮位于灯塔P的北偏东65°方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处,则这时海轮所在的B处距离灯塔P的距离是( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,矩形OABC的顶点O是直角坐标系的原点,点A、C分别在x轴、y轴上,点B的坐标为(8,4),将矩形OABC绕点A顺时针旋转得到矩形ADEF,D、E、F分别与B、C、O对应,EF的延长线恰好经过点C,AF与BC相交于点Q.
(1)证明:△ACQ是等腰三角形;
(2)求点D的坐标;
(3)如图2,动点M从点A出发在折线AFC上运动(不与A、C重合),经过的路程为x,过点M作AO的垂线交AC于点N,记线段MN在运动过程中扫过的面积为S;求S关于x的函数关系式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线的顶点,经过点,与轴分别交于,两点.
(1)求该抛物线的解析式;
(2)如图1,点是抛物线上的一个动点,且在直线的下方,过点作轴的平行线与直线交于点,当取最大值时,求点的坐标;
(3)如图2,轴交轴于点,点是抛物线上,之间的一个动点,直线,与分别交于,,当点运动时.
①直接写出的值;
②直接写出的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,有五个点,将二次函数的图象记为W.下列的判断中
①点A一定不在W上;
②点B,C,D可以同时在W上;
③点C,E不可能同时在W上.
所有正确结论的序号是_________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面内,对于给定的,如果存在一个半圆或优弧与的两边相切,且该弧上的所有点都在的内部或边上,则称这样的弧为的内切弧.当内切弧的半径最大时,称该内切弧为的完美内切弧.(注:弧的半径指该弧所在圆的半径)
在平面直角坐标系中,.
(1)如图1,在弧,弧,弧中,是的内切弧的是____________;
(2)如图2,若弧G为的内切弧,且弧G与边相切,求弧G的半径的最大值;
(3)如图3,动点,连接.
①直接写出的完美内切弧的半径的最大值;
②记①中得到的半径最大时的完美内切弧为弧T.点P为弧T上的一个动点,过点P作x轴的垂线,分别交x轴和直线于点D,E,点F为线段的中点,直接写出线段长度的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某市地铁工程正在加快建设,为了缓解市区内一些主要路段交通拥挤的现状,交警大队在一些主要路口设立了交通路况指示牌,如图所示,小明在离指示牌3.2米的点B处测得指示牌顶端D点和底端E点的仰角分别为52°和30°.求路况指示牌DE的高度.(精确到0.01米,参考数据:≈1.732,sin52°≈0.79,cos52°≈0.62, tan52°≈1.28.)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】综合与实践
问题情境
数学活动课上,老师让同学们以“三角形的旋转”为主题开展数学活动,和是两个全等的直角三角形纸片,其中,,.
解决问题
(1)如图①,智慧小组将绕点顺时针旋转,发现当点恰好落在边上时,,请你帮他们证明这个结论;
(2)缜密小组在智慧小组的基础上继续探究,连接,当C绕点继续旋转到如图②所示的位置时,他们提出,请你帮他们验证这一结论是否正确,并说明理由;
探索发现
(3)如图③,勤奋小组在前两个小组的启发下,继续旋转,当三点共线时,求的长;
(4)在图①的基础上,写出一个边长比为的三角形(可添加字母).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com