分析 设CD=x,则AD=2x,根据勾股定理求出AC的长,从而求出CD、AC的长,然后根据勾股定理求出BD的长,即可求出BC的长.
解答 解:设CD=x,则AD=2x,
由勾股定理可得,AC=$\sqrt{{x}^{2}+(2x)^{2}}$=$\sqrt{5}$x,
∵AC=3$\sqrt{5}$米,
∴$\sqrt{5}$x=3$\sqrt{5}$,
∴x=3(米),
∴CD=3米,
∴AD=2×3=6米,
在Rt△ABD中,BD=$\sqrt{1{0}^{2}-{6}^{2}}$=8(米),
∴BC=8-3=5(米).
故答案为:5米.
点评 本题考查了解直角三角形的应用--坡度坡角问题,找到合适的直角三角形,熟练运用勾股定理是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 茗茗家在丽丽家北偏西55°方向 | B. | 茗茗家在丽丽家北偏东55°方向 | ||
| C. | 茗茗家在丽丽家南偏西35°方向 | D. | 茗茗家在丽丽家北偏东35°方向 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | A | B. | B | C. | C | D. | D |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com