精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,△ABC的三个顶点坐标为A(﹣3,4),B(﹣4,2),C(﹣2,1),△ABC绕原点逆时针旋转90°,得到△A1B1C1,将△A1B1C1向右平移6个单位,再向上平移2个单位得到△A2B2C2

(1)画出△A1B1C1和△A2B2C2

(2)△ABC经旋转、平移后点A的对应点分别为A1A2,请写出点A1A2的坐标;

(3)Pab)是△ABC的边AC上一点,△ABC经旋转、平移后点P的对应点分别为P1P2,请写出点P1P2的坐标.

【答案】(1)画图见解析;(2)A1(﹣4,﹣3),A2(2,﹣1);(3)P1(﹣ba);P2(﹣b+6,a+2)

【解析】

(1)利用网格特点、旋转的性质和平移的性质画图;

(2)利用所画图形写出点A1、A2的坐标;

(3)利用(2)的结论和旋转的性质写出P1的坐标,利用平移的坐标规律写出P2的坐标.

(1)如图,A1B1C1A2B2C2为所作;

(2)A1(﹣4,﹣3),A2(2,﹣1);

(3)P1(﹣b,a);P2(﹣b+6,a+2).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】计算:
(1)先化简,再求值:( ,其中x= ﹣2.
(2)计算:|﹣4|+( 2﹣( ﹣1)0 cos45°.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】DE分别是ABC的边ABAC的中点.

(1)如图1,点OABC内的动点,点OF分别是OBOC的中点,求证:DEFG是平行四边形;

(2)如图2,若BEDC于点O,请问AO的延长线经过BC的中点吗?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读材料: 小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:,善于思考的小明进行了以下探索:

(其中均为整数),则有

.这样小明就找到了一种把部分的式子化为平方式的方法.

请你仿照小明的方法探索并解决下列问题:

均为正整数时,若,用含mn的式子分别表示,得      

2)利用所探索的结论,找一组正整数,填空:    (      )2

3)若,且均为正整数,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,轮船在A处观测灯塔C位于北偏西70°方向上,轮船从A处以每小时20海里的速度沿南偏西50°方向匀速航行,1小时后到达码头B处,此时,观测灯塔C位于北偏西25°方向上,则灯塔C与码头B的距离是( )

A.10 海里
B.10 海里
C.10 海里
D.20 海里

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△ABC,AB=AC,DBC的中点AC为腰向外作等腰直角△ACE,∠EAC=90°,连接BE,AD于点F,AC于点G.

(1)∠BAC=40°,求∠AEB的度数;

(2)求证:∠AEB=∠ACF.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,□ABCD,DEAB,BFCD,垂足分别为E,F.

(1)求证:AE=CF.

(2)求证:四边形BFDE为矩形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(10分)如图,在直角坐标系xOy中,A(﹣1,0)B(3,0),将AB同时分别向上平移2个单位,再向右平移1个单位,得到的对应点分别为DC,连接ADBC.

(1)直接写出点CD的坐标:C D

(2)四边形ABCD的面积为

(3)点P为线段BC上一动点(不含端点),连接PDPO.求证:∠CDP+BOP=OPD.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】列方程解应用题:

有一些相同的房间需要粉刷,一天 3名一级技工去粉刷 8个房间,结果其中有 50墙面未来得及刷;同样时间内 5名二级技工粉刷了 10个房间之外,还多刷了另外的40 墙面.已知每名同级别的技工每天的工作效率相同,每名一级技工比二级技工每天多刷 10墙面,求每个一级技工和二级技工每天粉刷的墙面各是多少平方米?

查看答案和解析>>

同步练习册答案