阅读理【解析】
如图,已知直线m∥n,A、B 为直线n上两点,C、D为直线m上两点,容易证明:△ABC的面积=△ABD的面积.
根据上述内容解决以下问题:
已知正方形ABCD的边长为4,G是边CD上一点,以CG为边作正方形GCEF.
(1)如图(2), 当点G是CD的中点时,△BDF的面积为 .
(2)如图(3), 当CG = a时, 则△BDF的面积为 ,并说明理由.
![]()
探索应用:小张家有一块长方形的土地如图(4),由于修建高速公路被占去一块三角形BCP区域.现决定在DP右侧补给小张一块土地,补偿后,土地变为四边形ABMD,要求补偿后的四边形ABMD的面积与原来形长方形ABCD的面积相等且M在射线BP上,请你在图中画出M点的位置,并简要叙述做法.
(1)8,8; (2)画图见解析.
【解析】
试题分析:(1)(2)(3)连接FC,∠BDC=∠DCF=45°,根据内错角相等,两直线平行可以证明BD∥CF,然后根据题目信息可以得到:△BDF的面积=△ABD的面积;
探索应用:同理,连接BD,过点C作BD的平行线,交BP的延长线于点M,则:△BDM的面积=△BDC的面积,所以补偿后的四边形ABMD的面积与原来形正方形ABCD的面积相等且M在射线BP上.
(1)8,
(2)8,
理由如下:连接CF,
∵BD、CF分别为两正方形的对角线,
∴∠BDC=∠DCF=45°,
∴BD∥CF,
∴S△BDF=S△CBD=8;
![]()
探索应用:连接BD,过C点作BD的平行线交BP的延长线于M,连接DM,
![]()
则S△BDM=S△CBD,
∴S△BDM-S△BDP=S△CBD-S△BDP,
即:S△DMP=S△PCB.
∴补偿后的四边形ABMD的面积与原来形正方形ABCD的面积相等且M在射线BP上.
考点:作图—应用与设计作图.
科目:初中数学 来源:2013-2014学年江苏省泰州市姜堰区中考适应性考试数学试卷(解析版) 题型:填空题
现有甲、乙两支球队,每支球队队员身高数据的平均数均为1.71米,方差分别为
=0.28,
=0.36,则身高较整齐的球队是 .(填“甲”或“乙”)
查看答案和解析>>
科目:初中数学 来源:2013-2014学年江苏省泰州市姜堰区中考适应性考试数学试卷(解析版) 题型:选择题
某同学一周中每天完成家庭作业所花时间(单位:分钟)分别为:35,40,45,40,55,40,48.这组数据的众数是
A.35 B.40 C.45 D.55
查看答案和解析>>
科目:初中数学 来源:2013-2014学年江苏省江阴市要塞片九年级下学期期中考试数学试卷(解析版) 题型:解答题
2011无锡“五一”车展期间,某公司对参观车展的且有购车意向的消费者进行了随机问卷调查,共发放900份调查问卷,并收回有效问卷750份.工作人员对有效调查问卷作了统计,其中,①将消费者年收入的情况整理后,制成表格如下:
年收入(万元) | 4.8 | 6 | 7.2 | 9 | 10 |
被调查的消费者人数(人) | 150 | 338 | 160 | 60 | 42 |
②将消费者打算购买小车的情况整理后,绘制出频数分布直方图(如图,尚未绘完整).
(注:每组包含最小值不包含最大值.)
请你根据以上信息,回答下列问题:
(1)根据①中信息可知,被调查消费者的年收入的中位数是 万元.
(2)请在右图中补全这个频数分布直方图.
(3)打算购买价格10万元以下(不含10万元)小车的消费者人数占被调查消费者人数的百分比是 .
(4)本次调查的结果,是否能够代表全市所有居民的年收入情况和购车意向?为什么?
![]()
查看答案和解析>>
科目:初中数学 来源:2013-2014学年江苏省江阴市九年级下学期期中考试数学试卷(解析版) 题型:解答题
如图所示,一只猫头鹰蹲在一棵树AC的B(点B在AC上)处,发现一只老鼠躲进短墙DF的另一侧,猫头鹰的视线被短墙遮住.为了寻找这只老鼠,猫头鹰向上飞至树顶C处.DF=4米,短墙底部D与树的底部A间的距离为2.7米,猫头鹰从C点观察F点的俯角为53°,老鼠躲藏处M (点M在DE上)距D点3米.
(参考数据:sin 37°≈0.60, cos 37°≈0.80,tan 37°≈0.75)
(1)猫头鹰飞至C处后,能否看到这只老鼠?为什么?
(2)要捕捉到这只老鼠,猫头鹰至少再要飞多少米(精确到0.1米)?
![]()
查看答案和解析>>
科目:初中数学 来源:2013-2014学年江苏省江阴市九年级下学期期中考试数学试卷(解析版) 题型:填空题
据统计,今年无锡南长区“古运河之光”旅游活动节期间,访问南长历史文化街区的国内外游客约908万人次,908万人次用科学记数法可表示为 人次.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com