精英家教网 > 初中数学 > 题目详情

【题目】某校为了解全校学生到校上学的方式,在全校随机抽取了若干名学生进行问卷调查,问卷给出了四种上学方式供学生选择,每人只能选一项,且不能不选.将调查得到的结果绘制成如图所示的扇形统计图和条形统计图(均不完整).

根据以上信息,解答下列问题:

(1)在这次调查中,一共抽取了 名学生;

(2)补全条形统计图;

(3)如果全校有1200名学生,学习准备的400个自行车停车位是否够用?

【答案】(1)80;(2)答案见解析;(3)够用。

【解析】

试题(1)根据公交车所占比例为40%,而由条形图知一共有32人坐公交车上学,从而求出总人数;

(2)由扇形统计图知:步行占20%,而由(1)总人数已知,从而求出步行人数,补全条形图;

(3)根据被调查的总人数及骑自行车上学的人数,用样本中骑自行车人数所占比例乘以总人数1200,与的400个自行车停车位比较即可得答案.

试题解析:解:(1)32÷40%=80,故答案为:80;

(2)“步行的人数为:80×20%=16(人),补全图,如下:

(3)∵骑自行车上学的人有80﹣(16+32+8)=24(人),×1200=360,∵360<400,∴够用.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】长城科技公司生产销售一种电子产品,该产品总成本包括技术成本、制造成本、销售成本三部分,经核算,年该产品各部分成本所占比例约为.且年该产品的技术成本、制造成本分别为万元、万元.

确定的值,并求年产品总成本为多少万元;

为降低总成本,该公司年及年增加了技术成本投入,确保这两年技术成本都比前一年增加一个相同的百分数,制造成本在这两年里都比前一年减少一个相同的百分数;同时为了扩大销售量,年的销售成本将在年的基础上提高,经过以上变革,预计年该产品总成本达到年该产品总成本的,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形中,,连接,点上,且.

1)求的长;

2)求的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】实践与应用:

一个西瓜放在桌子上用刀切下去,一刀可以切成2块,2刀最多可以切成4块;3刀最多可以切成7块,4刀最多可以切成11块(如图).

上述问题转化为数学模型实际上就是n条直线最多把平面分成几块的问题,有没有规律呢?请先进行试验,然后回答以下问题.

(1)填表:

(2)设n条直线把平面最多分成的块数是S,请写出S关于n的表达式.(不需要解题过程)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在⊙O中,弦AB、CD互相垂直,垂足为E,点M在CD上,连接AM并延长交BC于点F,交圆上于点G,连接AD,AD=AM.

(1)如图1,求证:AG⊥BC;

(2)如图2,连接EF,DG,求证:EF∥DG;

(3)如图3,在(2)的条件下,连接BG,若∠ABG=2∠BAG,EF=15,AB=32,求BG长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲乙两地相距8000米.张亮骑自行车从甲地出发匀速前往乙地,出发10分钟后,李伟步行从甲地出发同路匀速前往乙地.张亮到达乙地后休息片刻,以原来的速度从原路返回.如图所示是两人离甲地的距离y(米)与李伟步行时间x(分)之间的函数图象

(1)求两人相遇时李伟离乙地的距离;

(2)请你判断:当张亮返回到甲地时,李伟是否到达乙地?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(9分) 先学后教课题组对学生参与小组合作的深度和广度进行评价其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项课题组随机抽取了若干名初中学生的参与情况绘制了如图两幅不完整的统计图请根据图中所给信息解答下列问题:

(1)在这次评价中一共抽查了______名学生;

(2)请将条形统计图补充完整;

(3)求出扇形统计图中主动质疑所对应扇形的圆心角的度数

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场为了吸引顾客,设立了可以自由转动的转盘(如图,转盘被均匀分为20份),并规定:顾客每购买200元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得200元、100元、50元的购物券,凭购物券可以在该商场继续购物.如果顾客不愿意转转盘,那么可以直接获得购物券30元.

(1)求转动一次转盘获得购物券的概率;

(2)转转盘和直接获得购物券,你认为哪种方式对顾客更合算?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,对面积为1ABC逐次进行以下操作:第一次操作,分别延长ABBCCA至点A1B1C1,使得A1BABB1CBCC1ACA,顺次连接A1B1C1,得到A1B1C1,记其面积为S1;第二次操作,分别延长A1B1B1C1C1A1A2B2C2,使得A2B1A1B1B2C1B1C1C2A1C1A1,顺次连接A2B2C2,得到A2B2C2,记其面积为S2,按此规律继续下去.第n次操作得到AnBnn,则S1_____AnBnn的面积Sn_____

查看答案和解析>>

同步练习册答案