精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC中,ABACADBE是高,它们相交于点H,且AEBE

求证:AH2BD

【答案】详见解析

【解析】

由等腰三角形的底边上的垂线与中线重合的性质求得BC=2BD,根据直角三角形的两个锐角互余的特性求知∠1+∠C=90°;又由已知条件AE⊥AC∠2+∠C=90°,所以根据等量代换求得∠1=∠2;然后由三角形全等的判定定理SAS证明△AEH≌△BEC,再根据全等三角形的对应边相等及等量代换求得AH=2BD

∵AD是高,BE是高

∴∠EBC+∠C=∠CAD+∠C=90°

∴∠EBC=∠CAD

∵AEBE

∠AEH=∠BEC

∴△AEH△BEC(ASA)

∴AH BC

∵ABACAD是高

∴BC=2BD

∴AH 2BD

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某生活小区鲜奶店每天以每瓶3元的价格从奶场购进优质鲜奶,然后以每瓶6元的价格出售,如果当天卖不完,剩余的只有倒掉.店主记录了30天的日需求量(单位:瓶),整理得下表:

(1)求这30天内日需求量的众数;

(2)假设鲜奶店在这30天内每天购进28瓶,求这30天的日利润(单位:元)的平均数;

(3)以30记录的各需求量的频率作为各需求是发生的概率.若鲜奶店每天购进28瓶,求在这记录的30天内日利润不低于81元的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】反比例函数y=(k为常数,且k≠0)的图象经过点A(1,3)、B(3,m).

(1)求反比例函数的解析式及B点的坐标;

(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明从家出发沿滨江路到外滩公园徒步锻炼,到外滩公园后立即沿原路返回,小明离开家的路程s(单位:千米)与走步时间t(单位:小时)之间的函数关系如图所示,其中从家到外滩公园的平均速度是4千米/时,根据图形提供的信息,解答下列问题:

(1)求图中的a值;

(2)若在距离小明家5千米处有一个地点C,小明从第一层经过点C到第二层经过点C,所用时间为1.75小时,求小明返回过程中,s与t的函数解析式,不必写出自变量的取值范围;

(3)在(2)的条件下,求小明从出发到回到家所用的时间.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等腰ABC中,ABAC10cmBC12cmDBC上一点,连接ADEAD上一点,连接BE,若∠ABE=∠BAE═BAC,则DE的长为(

A.cmB.cmC.cmD.1cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线ABx轴、y轴分别交于点A(30)B(04),点Dy轴的负半轴上,若将DAB沿直线AD折叠,点B恰好落在x轴正半轴上的点C处.

1)求直线AB的表达式;

2)求点C和点D的坐标;

3y轴的正半轴上是否存在一点P,使得SPABSOCD?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC中,AB=ACDBABC的中线,且BDABC周长分为12cm15cm两部分,求三角形各边长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,分别是数轴上四个整数所对应的点,其中有一点是原点,并且这四个整数点每相邻两点之间的距离为1个单位长度.数对应的点在之间,数对应的点在之间.若,则原点是(

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知直线ABCD,直线EF分别交ABCDACCM是∠ACD的平分线,CMABH,过AAGACCMG

1)如图1,点GCH的延长线上时,

①若∠GAB=36°,则∠MCD=______

②猜想:∠GAB与∠MCD之间的数量关系是______

2)如图2,点GCH上时,(1)②猜想的∠GAB与∠MCD之间的数量关系还成立吗?如果成立,请给出证明;如果不成立,请写出∠GAB与∠MCD之间的数量关系,并说明理由.

查看答案和解析>>

同步练习册答案