精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,直线ABx轴交于点B,与y轴交于点A,与反比例函数的图象在第二象限交于点C,CEx轴,垂足为点E,,OB=4,OE=2.

(1)求反比例函数的解析式;

(2)若点D是反比例函数图象在第四象限上的点,过点DDFy轴,垂足为点F连接OD、BF,如果,求点D的坐标.

【答案】1;(2)点D的坐标为(,﹣4).

【解析】试题分析:(1)由边的关系可得出BE=6通过解直角三角形可得出CE=3结合函数图象即可得出点C的坐标再根据点C的坐标利用反比例函数图象上点的坐标特征即可求出反比例函数系数k由此即可得出结论

2)由点D在反比例函数在第四象限的图象上设出点D的坐标为(n,﹣)(n0).通过解直角三角形求出线段OA的长度再利用三角形的面积公式利用含n的代数式表示出SBAF根据点D在反比例函数图形上利用反比例函数系数k的几何意义即可得出SDFO的值结合题意给出的两三角形的面积间的关系即可得出关于n的分式方程解方程即可得出n从而得出点D的坐标.

试题解析:(1OB=4OE=2BE=OB+OE=6CEx∴∠CEB=90°.

RtBECCEB=90°,BE=6tanABO=CE=BEtanABO=6×=3结合函数图象可知点C的坐标为(﹣23).

∵点C在反比例函数y=的图象上k=﹣2×3=﹣6∴反比例函数的解析式为y=﹣

2∵点D在反比例函数y=﹣第四象限的图象上∴设点D的坐标为(n,﹣)(n0).

RtAOBAOB=90°,OB=4tanABO=OA=OBtanABO=4×=2

SBAF=AFOB=OA+OFOB=2+×4=4+

∵点D在反比例函数y=﹣第四象限的图象上SDFO=×|6|=3

SBAF=4SDFO4+=4×3解得n=经验证n=是分式方程4+=4×3的解∴点D的坐标为(,﹣4).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,ABC中,∠ACB90°sinABC8,点DAB的中点,过点BCD的垂线,垂足为点E.

(1)求线段CD的长;

(2)cosABE的值。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】摩拜公司为了调查在某市投放的共享单车使用情况,对4月份第一个星期中每天摩拜单车使用情况进行统计,结果如图所示.

(1)求这一个星期每天单车使用情况的众数、中位数和平均数;

(2)(1)中的结果估计4月份一共有多少万车次?

(3)摩拜公司在该市共享单车项目中共投入9600万元,估计本年度共租车3200万车次,若每车次平均收入租车费0.75元,请估计本年度全年租车费收入占总投入的百分比.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD为平行四边形,过点BBEABAD于点E,将线段BE绕点E顺时针旋转90°EF的位置,点M(M不与点B重合)在直线AB上,连结EM

(1)当点M在线段AB的延长线上时,将线段EM绕点E顺时针旋转90°EN1的位置,连结FN1,在图中画出图形,求证:FN1AB

(2)当点M在线段BA的延长线上时,将线段EM绕点E顺时针旋转90°EN2的位置,连结FN2,在图中画出图形,点N2在直线FN1上吗?请说明理由;

(3)AB3AD6DE1,设BMx,在(1)(2)的条件下,试用含x的代数式表示△FMN的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】平行四边形的 2 个顶点的坐标为,第三个顶点在 轴上,且与 轴的距离是 3 个单位,求第四个顶点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠ABC=90°,AB=CB,以AB为直径的⊙O交AC于点D,点E是AB边上一点(点E不与点A、B重合),DE的延长线交⊙O于点G,DF⊥DG,且交BC于点F.

(1)求证:AE=BF;

(2)连接GB,EF,求证:GB∥EF;

(3)若AE=1,EB=2,求DG的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】6分)某商场统计了今年1~5月A,B两种品牌冰箱的销售情况,并将获得的数据绘制成折线统计图

(1)分别求该商场这段时间内A,B两种品牌冰箱月销售量的中位数和方差;

(2)根据计算结果,比较该商场1~5月这两种品牌冰箱月销售量的稳定性.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了预防流感,某学校在星期天用药熏消毒法对教室进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y(毫克)与时间x(小时)成正比例;药物释放完毕后,yx成反比例,如图所示.根据以上信息解答下列问题:

(1)求药物释放完毕后,yx之间的函数关系式并写出自变量的取值范围;

(2)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进入教室,那么,从星期天下午500开始对某教室释放药物进行消毒,到星期一早上700时学生能否进入教室?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠A=90°OBC边上一点,以O为圆心的半圆与AB边相切于点D,与ACBC边分别交于点EFG,连接OD,已知BD=2AE=3tan∠BOD=

1)求⊙O的半径OD

2)求证:AE⊙O的切线;

3)求图中两部分阴影面积的和.

查看答案和解析>>

同步练习册答案