精英家教网 > 初中数学 > 题目详情

【题目】如图,河边有A,B两个村庄,A村距河边10 m,B村距河边30 m,两村平行于河边方向的水平距离为30 m,现要在河边建一抽水站,需铺设管道抽水到A村和B村.

(1)求铺设管道的最短长度是多少,请画图说明;

(2)若铺设管道每米需要500元,则最低费用为多少?

【答案】(1)铺设管道的最短长度是50m;(2)最低费用为25000元.

【解析】

(1)根据轴对称性质,过点AACCE于点C,延长AC至点D,使CD=AC,

连接BD,交河边于点E,连接AE,则抽水站应建在点E,可使铺设的管道最短,最短长度为AEBE,BD的长.过点BBFAC于点F,由题意得:AC=10 m,CF=30 m,BF=30 m,

CDAC=10 m,DF=10+30=40(m),RtBDF,根据勾股定理可得:BD2=302+402=502,计算可得:BD=50(m),

(2)将最短距离乘以铺管道每米的单价可进行计算,最低费用为50×500=25000().

如图,过点AACCE于点C,延长AC至点D,使CD=AC,

连接BD,交河边于点E,

连接AE,则抽水站应建在点E,可使铺设的管道最短,最短长度为AE+BE,BD的长.

过点BBFAC于点F,

由题意得:AC=10 m,CF=30 m,BF=30 m,

所以CDAC=10 m,

所以DF=10+30=40(m),

RtBDF,BD2=302+402=502,

所以BD=50(m),

即铺设管道的最短长度是50 m.

(2)最低费用为50×500=25000().

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1,抛物线y=﹣ [(x﹣2)2+n]与x轴交于点A(m﹣2,0)和B(2m+3,0)(点A在点B的左侧),与y轴交于点C,连结BC.

(1)求m、n的值;
(2)如图2,点N为抛物线上的一动点,且位于直线BC上方,连接CN、BN.求△NBC面积的最大值;
(3)如图3,点M、P分别为线段BC和线段OB上的动点,连接PM、PC,是否存在这样的点P,使△PCM为等腰三角形,△PMB为直角三角形同时成立?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1、图2中,点C为线段AB上一点,△ACM△CBN都是等边三角形.

(1) 如图1,线段AN与线段BM是否相等?证明你的结论;

(2) 如图2,ANMC交于点E,BMCN交于点F,探究△CEF的形状,并证明你的结论.

图1 图2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形纸片ABCD中,已知AD =8,折叠纸片使AB边与对角线AC

重合,点B落在点F处,折痕为AE,且EF=3,则AB的长为( )

A. 3 B. 4

C. 5 D. 6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】化简下列各式:
(1)4(a+b)2﹣2(a+b)(2a﹣2b)
(2)( ﹣m+1)÷

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,是2002年北京第24届国际数学家大会会徽,由4个全等的直角三角形拼合而成,如果大正方形的面积是13,小正方形的面积是1,直角三角形的短直角边为a,较长直角边为b,那么(a+b)2的值为( )

A.13
B.19
C.25
D.169

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:(1) (2)

(3) (4)

(5) (6)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=﹣x2+bx+c与直线y= x+2交于C、D两点,其中点C在y轴上,点D的坐标为(3, ).点P是y轴右侧的抛物线上一动点,过点P作PE⊥x轴于点E,交CD于点F.

(1)求抛物线的解析式;
(2)若点P的横坐标为m,当m为何值时,以O、C、P、F为顶点的四边形是平行四边形?请说明理由.
(3)若存在点P,使∠PCF=45°,请直接写出相应的点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=10,OC=8.在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处,求D,E两点的坐标.

查看答案和解析>>

同步练习册答案