【题目】如图,点A,B,C是半径为2的⊙O上三个点,AB为直径,∠BAC的平分线交圆于点D,过点D作AC的垂线交AC得延长线于点E,延长线ED交AB得延长线于点F.
(1)判断直线EF与⊙O的位置关系,并证明.
(2)若DF=,求tan∠EAD的值.
科目:初中数学 来源: 题型:
【题目】如图,二次函数的图像与轴正半轴交于点,平行于轴的直线与该抛物线交于、两点(点位于点左侧),与抛物线对称轴交于点.
(1)求的值;
(2)设、是轴上的点(点位于点左侧),四边形为平行四边形.过点、分别作轴的垂线,与抛物线交于点、.若,求、的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】图1,图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.
(1)在图1中画出以AB为底边的等腰直角三角形ABC,点C在小正方形的顶点上;
(2)在图2中画出以AB为腰的等腰三角形ABD,点D在小正方形的顶点上,且△ABD的面积为8.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,中,,将绕点C顺时针旋转得到,点D落在线段AB上,连接BE.
(1)求证:DC平分;
(2)试判断BE与AB的位置关系,并说明理由:
(3)若,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,于点,动点从点出发以每秒个单位长度的速度向终点运动,当点与点不重合时,过点作交边于点,以为边作使点在点的下方,且,设与重叠部分图形的面积为,点的运动时间为秒.
(1)的长为 ;
(2)当点落在边上时,求的值;
(3)当与重叠部分图形为四边形时,求与之间的函数关系式;
(4)若射线与边交于点连结,当的垂直平分线经过的顶点时,直接写出的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】成都“339”电视塔作为成都市地标性建筑之一,现已成为外地游客到成都旅游打卡的网红地.如图,为测量电视塔观景台处的高度,某数学兴趣小组在电视塔附近一建筑物楼顶处测得塔处的仰角为45°,塔底部处的俯角为22°.已知建筑物的高约为61米,请计算观景台的高的值.
(结果精确到1米;参考数据:,,)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,已知抛物线与轴交于,两点,与轴交于点.
(1)求抛物线的函数表达式
(2)如图1,点为第四象限抛物线上一点,连接,交于点,连接,记的面积为,的面积为,求的最大值;
(3)如图2,连接,,过点作直线,点,分别为直线和抛物线上的点.试探究:在第一象限是否存在这样的点,,使.若存在,请求出所有符合条件的点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,有四张正面标有数字,背面颜色一样的卡片,正面朝下放在桌面上,小红从中随机抽取一张卡片记下数字,再从余下的卡片中随机抽取一张卡片记下数字.
(1)第一次抽到数字2的卡片的概率是 ;
(2)设第一次抽到的数字为,第二次抽到的数字为,点的坐标为,请用树状图或列表法求点在第三象限的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABE中,C,D是边BE上的两点,有下面四个关系式:(1)AB=AE,(2)BC=DE,(3)AC=AD,(4)∠BAC=∠EAD.请用其中两个作为已知条件,余下两个作为求证的结论,写出你的已知和求证,并证明.
已知:
求证:
证明:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com