精英家教网 > 初中数学 > 题目详情

【题目】如图,在正方形ABCD中,点M是边BC上的一点(不与B、C重合),点NCD边的延长线上,且满足∠MAN=90°,联结MN、AC,N与边AD交于点E.

(1)求证:AM=AN;

(2)如果∠CAD=2NAD,求证:AM2=ACAE.

【答案】(1)证明见解析;(2)证明见解析.

【解析】分析:1)根据正方形的性质、全等三角形的判定定理证明△BAM≌△DAN根据全等三角形的性质证明

2)证明△AMC∽△AEN根据相似三角形的性质证明.

详解:(1∵四边形ABCD是正方形AB=ADBAD=90°,

MAN=90°,∴∠BAM=DAN

BAM和△DAN

∴△BAM≌△DANAM=AN

2)四边形ABCD是正方形∴∠CAD=45°.

∵∠CAD=2NADBAM=DAN

∴∠MAC=45°,∴∠MAC=EAN

又∠ACM=ANE=45°,∴△AMC∽△AEN

=ANAM=ACAEAM2=ACAE

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知A(4,2)B(2,6)C(0,4)是直角坐标系平面上三点.

(1)ABC向右平移4个单位再向下平移1个单位,得到A1B1C1,画出平移后的图形;

(2)ABC内部有一点P(ab),则平移后它的对应点P1的坐标为__________

(3)以原点O为位似中心,将ABC缩小为原来的一半,得到A2B2C2,请在所给的坐标系中作出所有满足条件的图形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读理解:

我们知道,四边形具有不稳定性,容易变形,如图1,一个矩形发生变形后成为一个平行四边形,设这个平行四边形相邻两个内角中较小的一个内角为α,我们把的值叫做这个平行四边形的变形度.

1)若矩形发生变形后的平行四边形有一个内角是120度,则这个平行四边形的变形是 

猜想证明:

2)设矩形的面积为S1,其变形后的平行四边形面积为S2,试猜想S1S2 之间的数量关系,并说明理由;

拓展探究:

3)如图2,在矩形ABCD中,EAD边上的一点,且AB2=AEAD,这个矩形发生变形后为平行四边形A1B1C1D1E1E的对应点,连接B1E1B1D1,若矩形ABCD的面积为4 m0),平行四边形A1B1C1D1的面积为2m0),试求∠A1E1B1+A1D1B1的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了测量竖直旗杆AB的高度某综合实践小组在地面D处竖直放置标杆CD,并在地面上水平放置个平面镜E,使得B,E,D在同一水平线上如图所示.该小组在标杆的F处通过平面镜E恰好观测到旗杆顶A(此时∠AEB=FED).F处测得旗杆顶A的仰角为39.3°,平面镜E的俯角为45°,FD=1.8问旗杆AB的高度约为多少米? (结果保留整数)(参考数据:tan39.3°≈0.82,tan84.3°≈10.02)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC的面积为12BCBC边上的高AD之比为32,矩形EFGH的边EFBC上,点HG分别在边ABAC上,且HG2GF

(1)AD的长;

(2)求矩形EFGH的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,AB=AC,∠BAC=120°DEBC上的两点,且∠DAE=30°,将AEC绕点A顺时针旋转120°后,得到AFB,连接DF.下列结论中正确的个数有(  )

①∠FBD=60°;②△ABE∽△DCA;③AE平分∠CAD;④△AFD是等腰直角三角形.

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数y=x2+bx+c的图象与x轴交于 A、B两点,与y轴交于点C,OB=OC.点D在函数图象上,CDx轴,且CD=2,直线l是抛物线的对称轴,E是抛物线的顶点.

(1)求b、c的值;

(2)如图①,连接BE,线段OC上的点F关于直线l的对称点F'恰好在线段BE上,求点F的坐标;

(3)如图②,动点P在线段OB上,过点Px轴的垂线分别与BC交于点M,与抛物线交于点N.试问:抛物线上是否存在点Q,使得△PQN与△APM的面积相等,且线段NQ的长度最小?如果存在,求出点Q的坐标;如果不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是抛物线y1=ax2+bx+ca≠0)图象的一部分,抛物线的顶点坐标A13),与x轴的一个交点B40),直线y2=mx+nm≠0)与抛物线交于AB两点,下列结论:

①2a+b=0②abc0方程ax2+bx+c=3有两个相等的实数根;抛物线与x轴的另一个交点是(﹣10);1x4时,有y2y1

其中正确的是( )

A. ①②③ B. ①③④ C. ①③⑤ D. ②④⑤

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】A、B、C三人玩篮球传球游戏,游戏规则是:第一次传球由A将球随机地传给B,C两人中的某一人,以后的每一次传球都是由上次的传球者随机地传给其他两人中的某一人.

(1)求两次传球后,球恰在B手中的概率;

(2)求三次传球后,球恰在A手中的概率.

查看答案和解析>>

同步练习册答案