【题目】如图,在△ABC中,AB=AC,∠BAC=120°,D,E是BC上的两点,且∠DAE=30°,将△AEC绕点A顺时针旋转120°后,得到△AFB,连接DF.下列结论中正确的个数有( )
①∠FBD=60°;②△ABE∽△DCA;③AE平分∠CAD;④△AFD是等腰直角三角形.
A. 1个 B. 2个 C. 3个 D. 4个
【答案】B
【解析】
根据旋转的性质得出∠ABF=∠C,求出∠ABC=∠C=30°,即可判断①;根据三角形外角性质求出∠ADC=∠BAE,根据相似三角形的判定即可判断②;求出∠EAC大于30°,而∠DAE=30°,即可判断③;求出△AFD是直角三角形,但是不能推出是等腰三角形,即可判断④.
解:∵在△ABC中,AB=AC,∠BAC=120°,
∴∠ABC=∠C=30°,
∵将△AEC绕点A顺时针旋转120°后,得到△AFB,
∴△AEC≌△AFB,
∴∠ABF=∠C=30°,
∴∠FBD=30°+30°=60°,∴①正确;
∵∠ABC=∠DAE=30°,
∴∠ABC+∠BAD=∠DAE+∠BAD,
即∠ADC=∠BAE,
∵∠ABC=∠C,
∴△ABE∽△DCA,∴②正确;
∵∠C=∠ABC=∠DAE=30°,∠BAC=120°,
∴∠BAD+∠EAC=120°∠DAE=90°,
∴∠ABC+∠BAD<90°,
∴∠ADC<90°,
∴∠DAC>60°,
∴∠EAC>30°,
即∠DAE≠∠EAC,∴③错误;
∵将△AEC绕点A顺时针旋转120°后,得到△AFB,
∴AF=AE,∠EAC=∠BAF,
∵∠BAC=120°,∠DAE=30°,
∴∠BAD+∠EAC=90°,
∴∠DAB+∠BAF=90°,
即△AFD是直角三角形,
∵在△DAE中,∠ADE=∠ABC+∠BAD,∠AED=∠C+∠EAC,∠ABC=∠C,但是根据已知不能推出∠BAD=∠EAC,
∴∠ADE和∠AED不相等,
∴AD和AE不相等,
即△AFD是直角三角形,但是不一定是等腰三角形,∴④错误;
故选:B.
科目:初中数学 来源: 题型:
【题目】我们知道:选用同一长度单位量得两条线段、的长度分别是,,那么就说两条线段的比:
,如果把表示成比值,那么,或.请完成以下问题:
四条线段,,,中,如果________,那么这四条线段,,,叫做成比例线段.
已知,那么________,________
如果,那么成立吗?请用两种方法说明其中的理由.
如果,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,对角线AC,BD交于点E,∠BAC=90°,∠CED=45°,∠DCE=30°,DE=,BE=.求CD的长和四边形ABCD的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD中,E为CD的中点,AE的垂直平分线分别交AD,BC及AB的延长线于点F,G,H,连接HE,HC,OD,连接CO并延长交AD于点M.则下列结论中:
①FG=2AO;②OD∥HE;③;④2OE2=AHDE;⑤GO+BH=HC
正确结论的个数有( )
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,点M是边BC上的一点(不与B、C重合),点N在CD边的延长线上,且满足∠MAN=90°,联结MN、AC,N与边AD交于点E.
(1)求证:AM=AN;
(2)如果∠CAD=2∠NAD,求证:AM2=ACAE.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,□ABCD的对角线交于点O,点E在边BC的延长线上,且OE=OB,连接DE.
(1)求证:△BDE是直角三角形;
(2)如果OE⊥CD,试判断△BDE与△DCE是否相似,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC是边长为4的等边三角形,点D是线段BC的中点,∠EDF=120°,把
∠EDF绕点D旋转,使∠EDF的两边分别与线段AB、AC交于点E、F.
(1)当DF⊥AC时,求证:BE=CF;
(2)在旋转过程中,BE+CF是否为定值?若是,求出这个定值;若不是,请说明理由;
(3)在旋转过程中,连接EF,设BE=x,△DEF的面积为S,求S与x之间的函数解析式,并求S的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学为了提高学生的消防意识,举行了消防知识竞赛,所有参赛学生分别设有一、二、三等奖和纪念奖,获奖情况已绘制成如图所示的两幅不完整的统计图,根据图中所经信息解答下列问题:
(1)这次知识竞赛共有多少名学生?
(2)“二等奖”对应的扇形圆心角度数,并将条形统计图补充完整;
(3)小华参加了此次的知识竞赛,请你帮他求出获得“一等奖或二等奖”的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下列材料并回答问题:
材料1:如果一个三角形的三边长分别为a,b,c,记,那么三角形的面积为. ①
古希腊几何学家海伦(Heron,约公元50年),在数学史上以解决几何测量问题而闻名.他在《度量》一书中,给出了公式①和它的证明,这一公式称海伦公式.
我国南宋数学家秦九韶(约1202﹣﹣约1261),曾提出利用三角形的三边求面积的秦九韶公式:. ②
下面我们对公式②进行变形:
.
这说明海伦公式与秦九韶公式实质上是同一公式,所以我们也称①为海伦﹣﹣秦九韶公式.
问题:如图,在△ABC中,AB=13,BC=12,AC=7,⊙O内切于△ABC,切点分别是D、E、F.
(1)求△ABC的面积;
(2)求⊙O的半径.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com