精英家教网 > 初中数学 > 题目详情

【题目】我们知道:选用同一长度单位量得两条线段的长度分别是,那么就说两条线段的比

,如果把表示成比值,那么,或.请完成以下问题:

四条线段中,如果________,那么这四条线段叫做成比例线段.

已知,那么________,________

如果,那么成立吗?请用两种方法说明其中的理由.

如果,求的值.

【答案】(1);(2)3,3;(3)见解析;(4) m=2或1.

【解析】

(1)根据成比例线段的定义作答;
(2)由,a=2bc=2d,代入计算即可求解;
(3)利用等式的性质两边减去1即可证明;设那么a=kbc=kd,代入即可证明;
(4)可分x+y+z=0x+y+z≠0两种情况代入求值和利用等比性质求解.

(1)四条线段abcd中,如果a:b=c:d,那么这四条线段abcd叫做成比例线段;

(2),

a=2bc=2d

(3)如果,那么成立.理由如下:

证明一:∵,

,

.

证明二:设,那么

.

(4)①当x+y+z=0时,

y+z=xz+x=yx+y=z

m为其中任何一个比值,

x+y+z≠0时,

所以m=21.

故答案为:a:b=c:d;3,3.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知:点D是等腰直角三角形ABC斜边BC所在直线上一点(不与点B重合),连接AD.

(1)如图1,当点D在线段BC上时,将线段AD绕点A逆时针方向旋转90°得到线段AE,连接CE.求证:BD=CE,BDCE;

(2)如图2,当点D在线段BC延长线上时,将线段AD绕点A逆时针方向旋转90°得到线段AE,连接CE.请画出图形。上述结论是否仍然成立,并说明理由;

(3)根据图2,请直接写出AD、BD、CD三条线段之间的数量关系。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD中,ABBCADDC,∠BAD=m°m>90,BCCD上分别找一点MN,当△AMN周长最小时,∠AMN+ANM的度数是_______(用m来表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC是边长为6cm的等边三角形,动点PQ同时从AB两点出发,分别在ABBC边上匀速移动,它们的速度分别为=2cm/s=1cm/s,当点P到达点B时,PQ两点同时停止运动,设点P的运动时间为t秒.

1)用含t的代数式表示BP=______BQ=_______

2)当t为何值时,BPQ为等边三角形?

3)当t为何值时,BPQ为直角三角形?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线轴仅有一个公共点,经过点的直线交该抛物线于点,交轴于点且点是线段的中点.

求这条抛物线对应的函数解析式;

求直线对应的函数解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中.

利用尺规作图,在BC边上求作一点P,使得点PAB的距离的长等于PC的长;

利用尺规作图,作出中的线段PD.

要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】先化简,再求值

1)(1+2x)(12x)﹣(x32+5xx1),其中x=﹣2

2[2xy2﹣(2x+y)(x2y]÷4y,其中x=﹣8y1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC中,AB=AC=10cmBC=8cm,∠B=C,DAB的中点.

(1)如果点P在线段BC上以3cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.

①若点Q的运动速度与点P的运动速度相等,经过1s后,△BPD与△CQP是否全等,请说明理由;

②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为时________cm/s,在运动过程中能够使△BPD与△CQP全等.(直接填答案)

(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC在平面直角坐标系中的位置如图所示.A(2,3)B(3,1)C(-2,-2)三点在格点上.

1)作出△ABC关于y轴对称的△A1B1C1

2)直接写出△ABC关于x轴对称的△A2B2C2的各点坐标;

3)求出△ABC的周长。.

查看答案和解析>>

同步练习册答案