【题目】(定义)从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.
(1)如图1,△ABC中,∠A=40°,∠B=60°,CD平分∠ACB.求证:CD为△ABC的完美分割线;
(2)在△ABC中,CD是△ABC的完美分割线,其中△ACD为等腰三角形,设∠A=x°,∠B=y°,则y与x之间的关系式为_____________________________;
(3)如图2,△ABC中,AC=2,BC=,CD是△ABC的完美分割线,且△ACD是以CD为底边的等腰三角形,求完美分割线CD的长.
【答案】(1)详见解析;(2)3x+y=180或3x+2y=180;(3)CD=
【解析】
(1)据完美分割线①△ABC不是等腰三角形,②△ACD等三角形,③△BDC∽△BCA即可
(2)分三种情形讨论即可①如图2,当AD=CD时,②如图3中,当AD=AC时,③如图4中,当AC=CD时,分别求出x,y的关系即可.
(3)由题意可知,AC=AD=2;然后运用相似三角形的性质和判定以及勾股定理求解即可.
(1)证明:∵ ∠A=40°,∠B=60°
∴∠ACB=80°
∴△ABC不是等腰三角形
∵CD平分∠ACB
∴∠ACD=∠DCB=40°
∴△ACD是等腰三角形
∵∠A=∠DCB=40° ∠B=∠B
∴ △BCD∽△BAC
∴CD为△ABC的完美分割线
(2)①当AD=CD时,如图
∴∠ACD=∠A=x
∴∠CDA=∠ACD+∠A=2x
又∵△BCD∽△BAC
∴∠DCB=∠A=x
∴x+2x+y=180°,即3x+y=180
②当AD=AC时,如图
∴
又∵△BCD∽△BAC
∴∠DCB=∠A=x
∴x+y=,即3x+2y=180°
③当AD=AC时,如图
,矛盾,舍弃.
故y与x之间的关系式为3x+y=180或3x+2y=180
(3)由题意得AC=AD=2
∵△BCD∽△BAC
∴= 设BD=x
则x(x+2)=( )2
解得x1=1 x2=-3(舍去)
∴ BD=1
∵△BCD∽△BAC
∴= 即=
∴CD=
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,E、F分别是边AB、CD上的点,AE=CF,连接EF,BF,EF与对角线AC交于O点,且BE=BF,∠BEF=2∠BAC。
(1)求证:OE=OF;
(2)若BC=,求AB的长。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】解方程
(1)x2-7x+6=0
(2)(5x-1)2=3(5x-1)
(3) x2-4x-3=0 (用配方法)
(4) x2+4x+2=0(用公式法)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在在四边形ABCD中,AD∥BC,∠B=90°,且AD=12cm,AB=8cm,DC=10cm,若动点P从A点出发,以每秒2cm的速度沿线段AD向点D运动;动点Q从C点出发以每秒3cm的速度沿CB向B点运动,当P点到达D点时,动点P、Q同时停止运动,设点P、Q同时出发,并运动了t秒,回答下列问题:
(1)BC= cm;
(2)当t= 秒时,四边形PQBA成为矩形.
(3)是否存在t,使得△DQC是等腰三角形?若存在,请求出t的值;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,点E,F分别在边BC,AC上,沿EF所在的直线折叠∠C,使点C的对应点D恰好落在边AB上,若△EFC和△ABC相似,则AD的长为___.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线与轴交于、两点,与轴交于点,且.
(1)求抛物线的解析式和顶点的坐标;
(2)判断的形状,证明你的结论;
(3)点是轴上的一个动点,当的周长最小时,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们定义:有一组对角相等而另一组对角不相等的凸四边形叫做“等对角四边形”.
(1)已知:如图1,四边形ABCD是等对角四边形,∠A≠∠C,∠A=60°,∠B=75°,则:∠C= °,∠D= °;
(2)已知,如图2,在平面直角坐标系xOy中,四边形ABCD是等对角四边形,其中A(﹣2,0),C(2,0),B(-1,),点D在y轴上.
①若抛物线y=ax2+bx+c过点A,C,D,求二次函数的解析式;
②若抛物线y=ax2+bx+c(a<0)过点A,C,点P在抛物线上,当满足∠APC=∠ADC的P点至少有3个时,总有不等式2n﹣+成立,求n的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某旅游景点的年游客量y(万人)是门票价格x(元)的一次函数,其函数图像如下图.
(1)求y关于x的函数解析式;
(2)经过景点工作人员统计发现:每卖出一张门票所需成本为20元.那么要想获得年利润11500万元,且门票价格不得高于230元,该年的门票价格应该定为多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】爱好数学的甲、乙两个同学做了一个数字游戏:拿出三张正面写有数字﹣1,0,1且背面完全相同的卡片,将这三张卡片背面朝上洗匀后,甲先随机抽取一张,将所得数字作为p的值,然后将卡片放回并洗匀,乙再从这三张卡片中随机抽取一张,将所得数字作为q值,两次结果记为.
(1)请你帮他们用树状图或列表法表示所有可能出现的结果;
(2)求满足关于x的方程没有实数根的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com