精英家教网 > 初中数学 > 题目详情

【题目】(定义)从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.

1)如图1,△ABC中,∠A40°,∠B60°CD平分∠ACB.求证:CD为△ABC的完美分割线;

2)在△ABC中,CD是△ABC的完美分割线,其中△ACD为等腰三角形,设∠Ax°,∠By°,则yx之间的关系式为_____________________________

3)如图2,△ABC中,AC2BCCD是△ABC的完美分割线,且△ACD是以CD为底边的等腰三角形,求完美分割线CD的长.

【答案】(1)详见解析;(2)3xy1803x2y180;(3CD=

【解析】

1)据完美分割线①△ABC不是等腰三角形,②△ACD等三角形,③△BDC∽△BCA即可

2)分三种情形讨论即可①如图2,当AD=CD时,②如图3中,当AD=AC时,③如图4中,当AC=CD时,分别求出x,y的关系即可.

3)由题意可知,AC=AD=2;然后运用相似三角形的性质和判定以及勾股定理求解即可.

(1)证明:∵ ∠A40°B60°

∴∠ACB80°

∴△ABC不是等腰三角形

CD平分ACB

∴∠ACDDCB40°

∴△ACD是等腰三角形

∵∠ADCB40° ∠BB

∴ △BCD∽△BAC

CDABC的完美分割线

2)①当AD=CD时,如图

∴∠ACD=∠A=x

∴∠CDA=∠ACD+∠A=2x

又∵BCD∽△BAC

∠DCB=∠A=x

∴x+2x+y=180°,即3xy180

②当AD=AC时,如图

又∵BCD∽△BAC

∠DCB=∠A=x

∴x+y=,即3x+2y=180°

③当AD=AC时,如图

,矛盾,舍弃.

yx之间的关系式为3xy1803x2y180

3)由题意得AC=AD=2

∵△BCD∽△BAC

BD=x

xx+2= 2

解得x11 x2=-3(舍去)

BD=1

∵△BCD∽△BAC

CD=

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,EF分别是边ABCD上的点,AE=CF,连接EFBFEF与对角线AC交于O点,且BE=BF∠BEF=2∠BAC

1)求证:OE=OF

2)若BC=,求AB的长。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解方程

(1)x2-7x+6=0

(2)(5x-1)2=3(5x-1)

(3) x2-4x-3=0 (用配方法)

(4) x2+4x+2=0(用公式法)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在在四边形ABCD中,ADBC,∠B90°,且AD12cmAB8cmDC10cm,若动点PA点出发,以每秒2cm的速度沿线段AD向点D运动;动点QC点出发以每秒3cm的速度沿CBB点运动,当P点到达D点时,动点PQ同时停止运动,设点PQ同时出发,并运动了t秒,回答下列问题:

1BC   cm

2)当t   秒时,四边形PQBA成为矩形.

3)是否存在t,使得△DQC是等腰三角形?若存在,请求出t的值;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,RtABC,C=90°AC=3BC=4,点EF分别在边BCAC上,沿EF所在的直线折叠∠C,使点C的对应点D恰好落在边AB上,若△EFC和△ABC相似,则AD的长为___.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线轴交于两点,与轴交于点,且

(1)求抛物线的解析式和顶点的坐标;

(2)判断的形状,证明你的结论;

(3)点轴上的一个动点,当的周长最小时,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们定义:有一组对角相等而另一组对角不相等的凸四边形叫做等对角四边形

1)已知:如图1,四边形ABCD是等对角四边形,∠AC,∠A60°,∠B75°,则:∠C   °,∠D   °

2)已知,如图2,在平面直角坐标系xOy中,四边形ABCD是等对角四边形,其中A(﹣20),C20),B-1),点Dy轴上.

①若抛物线yax2+bx+c过点ACD,求二次函数的解析式;

②若抛物线yax2+bx+ca0)过点AC,点P在抛物线上,当满足∠APCADCP点至少有3个时,总有不等式2n+成立,求n的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某旅游景点的年游客量y(万人)是门票价格x(元)的一次函数,其函数图像如下图.

(1)求y关于x的函数解析式;

(2)经过景点工作人员统计发现:每卖出一张门票所需成本为20元.那么要想获得年利润11500万元,且门票价格不得高于230元,该年的门票价格应该定为多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】爱好数学的甲、乙两个同学做了一个数字游戏:拿出三张正面写有数字﹣101且背面完全相同的卡片,将这三张卡片背面朝上洗匀后,甲先随机抽取一张,将所得数字作为p的值,然后将卡片放回并洗匀,乙再从这三张卡片中随机抽取一张,将所得数字作为q值,两次结果记为

1)请你帮他们用树状图或列表法表示所有可能出现的结果;

2)求满足关于x的方程没有实数根的概率.

查看答案和解析>>

同步练习册答案